首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5480篇
  免费   467篇
  国内免费   6篇
  2023年   33篇
  2022年   54篇
  2021年   158篇
  2020年   83篇
  2019年   112篇
  2018年   134篇
  2017年   117篇
  2016年   165篇
  2015年   302篇
  2014年   339篇
  2013年   373篇
  2012年   458篇
  2011年   391篇
  2010年   246篇
  2009年   237篇
  2008年   300篇
  2007年   285篇
  2006年   227篇
  2005年   226篇
  2004年   234篇
  2003年   210篇
  2002年   205篇
  2001年   63篇
  2000年   40篇
  1999年   50篇
  1998年   41篇
  1997年   41篇
  1996年   35篇
  1995年   31篇
  1994年   22篇
  1993年   36篇
  1992年   29篇
  1991年   30篇
  1990年   38篇
  1989年   22篇
  1988年   33篇
  1987年   26篇
  1986年   13篇
  1984年   20篇
  1983年   23篇
  1982年   23篇
  1981年   25篇
  1980年   21篇
  1979年   24篇
  1978年   23篇
  1977年   16篇
  1976年   18篇
  1975年   19篇
  1974年   16篇
  1973年   12篇
排序方式: 共有5953条查询结果,搜索用时 15 毫秒
971.
Acylation is a prevalent chemical modification that to a significant extent accounts for the tremendous diversity of plant metabolites. To catalyze acyl transfer reactions, higher plants have evolved acyltransferases that accept β-acetal esters, typically 1-O-glucose esters, as an alternative to the ubiquitously occurring CoA-thioester-dependent enzymes. Shared homology indicates that the β-acetal ester-dependent acyltransferases are derived from a common hydrolytic ancestor of the Serine CarboxyPeptidase (SCP) type, giving rise to the name Serine CarboxyPeptidase-Like (SCPL) acyltransferases. We have analyzed structure–function relationships, reaction mechanism and sequence evolution of Arabidopsis 1-O-sinapoyl-β-glucose:l-malate sinapoyltransferase (AtSMT) and related enzymes to investigate molecular changes required to impart acyltransferase activity to hydrolytic enzymes. AtSMT has maintained the catalytic triad of the hydrolytic ancestor as well as part of the H-bond network for substrate recognition to bind the acyl acceptor l-malate. A Glu/Asp substitution at the amino acid position preceding the catalytic Ser supports binding of the acyl donor 1-O-sinapoyl-β-glucose and was found highly conserved among SCPL acyltransferases. The AtSMT-catalyzed acyl transfer reaction follows a random sequential bi-bi mechanism that requires both substrates 1-O-sinapoyl-β-glucose and l-malate bound in an enzyme donor–acceptor complex to initiate acyl transfer. Together with the strong fixation of the acyl acceptor l-malate, the acquisition of this reaction mechanism favours transacylation over hydrolysis in AtSMT catalysis. The model structure and enzymatic side activities reveal that the AtSMT-mediated acyl transfer proceeds via a short-lived acyl enzyme complex. With regard to evolution, the SCPL acyltransferase clade most likely represents a recent development. The encoding genes are organized in a tandem-arranged cluster with partly overlapping functions. With other enzymes encoded by the respective gene cluster on Arabidopsis chromosome 2, AtSMT shares the enzymatic side activity to disproportionate 1-O-sinapoyl-β-glucoses to produce 1,2-di-O-sinapoyl-β-glucose. In the absence of the acyl acceptor l-malate, a residual esterase activity became obvious as a remnant of the hydrolytic ancestor. With regard to the evolution of Arabidopsis SCPL acyltransferases, our results suggest early neofunctionalization of the hydrolytic ancestor toward acyltransferase activity and acyl donor specificity for 1-O-sinapoyl-β-glucose followed by subfunctionalization to recognize different acyl acceptors.  相似文献   
972.
Prosimians (tarsiers and strepsirrhini) represent the basal lineages in primates and have a close bearing on the origin of primates. Although major lineages among anthropoidea (humans, apes and monkeys) are well represented by complete mitochondrial DNA (mtDNA) sequence data, only one complete mtDNA sequence from a representative of each of the infraorders in prosimians has been described until quite recently, and therefore we newly determined complete mtDNA sequences from 5 lemurs, 4 lorises, one tarsier and one platyrrhini. These sequences were provided to phylogenetic analyses in combination with the sequences from the 15 primates species reported to the database. The position of tarsiers among primates could not be resolved by the maximum likelihood (ML) and neighbor-joining (NJ) analyses with several data sets. As to the position of tarsiers, any of the three alternative topologies (monophyly of haplorhini, monophyly of prosimians, and tarsiers being basal in primates) was not rejected at the significance level of 5%, neither at the nucleotide nor at the amino acid level. In addition, the significant variations of C and T compositions were observed across primates species. Furthermore, we used AGY data sets for phylogenetic analyses in order to remove the effect of different C/T composition bias across species. The analyses of AGY data sets provided a medium support for the monophyly of haplorhini, which might have been screened by the variation in base composition of mtDNA across species. To estimates the speciation dates within primates, we analyzed the amino acid sequences of mt-proteins with a Bayesian method of Thorne and Kishino. Divergence dates were estimated as follows for the crown groups: about 35.4 million years ago (mya) for lorisiformes, 55.3 mya for lemuriformes, 64.5 mya for strepsirrhini, 70.1 mya for haplorhini and 76.0 mya for primates. Furthermore, we reexamined the biogeographic scenarios which have been proposed for the origin of strepsirrhini (lemuriformes and lorisiformes) and for the dispersal of the lemuriformes and lorisiformes.  相似文献   
973.
Although the timing with which common epithelial malignancies arise and become established remains a matter of debate, it is clear that by the time they are detected these tumors harbor hundreds of deregulated, aberrantly expressed or mutated genes. This enormous complexity poses formidable challenges to identify gene pathways that are drivers of tumorigenesis, potentially suitable for therapeutic intervention. An alternative approach is to consider cancer pathways as interconnected networks, and search for potential nodal proteins capable of connecting multiple signaling networks of tumor maintenance. We have modeled this approach in advanced prostate cancer, a condition with current limited therapeutic options. We propose that the integration of three signaling networks, including chaperone‐mediated mitochondrial homeostasis, integrin‐dependent cell signaling, and Runx2‐regulated gene expression in the metastatic bone microenvironment plays a critical role in prostate cancer maintenance, and offers novel options for molecular therapy. J. Cell. Biochem. 107: 845–852, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
974.
975.
976.
This paper extends a previously formulated deterministic metabolic/hemodynamic model for the generation of blood oxygenated level dependent (BOLD) responses to include both physiological and observation stochastic components (sMHM). This adds a degree of flexibility when fitting the model to actual data by accounting for un-modelled activity. We then show how the innovation method can be used to estimate unobserved metabolic/hemodynamic as well as vascular variables of the sMHM, from simulated and actual BOLD data. The proposed estimation method allowed for doing model comparison by calculating the model’s AIC and BIC. This methodology was then used to select between different neurovascular coupling assumptions underlying sMHM. The proposed framework was first validated on simulations and then applied to BOLD data from a motor task experiment. The models under comparison in the analysis of the actual data considered that vascular response was coupled to: (I) inhibition, (II) excitation, (III) both excitation and inhibition. Data was best described by model II, although model III was also supported.  相似文献   
977.
Several aspects of the biology of Phymaturus lizards including their herbivorous diet, specialized microhabitat use, and viviparous reproductive mode are highly conserved within the group. Here, we explore two aspects of Phymaturus thermal biology and test for the co-evolution among aspects of the thermal biology in these lizards, such as thermal preferenda and critical temperatures. Secondly, we explore correlations among variation in thermal biology with elevation and latitude. To do so, we used phylogenetically based comparative analyses (PCM) together with conventional statistics. Our results show that thermal biology for Phymaturus is conservative and our data do not suggest the co-evolution of thermal variables. Moreover, we detected low levels of variation in the thermal parameters studied, and no clear relationships between climatic and thermal variables. As a significant association between climatic and thermal variables could be demonstrated for a set of syntopic Liolaemus lizards, we suggest that thermal biology in Phymaturus lizards may be evolutionarily or ecologically constrained.  相似文献   
978.
Plant immune responses to pathogens are often associated with enhanced production of reactive oxygen species (ROS), known as the oxidative burst, and with rapid hypersensitive host cell death (the hypersensitive response, HR) at sites of attempted infection. It is generally accepted that the oxidative burst acts as a promotive signal for HR, and that HR is highly correlated with efficient disease resistance. We have identified the Arabidopsis mutant rph1 ( resistance to Phytophthora 1 ), which is susceptible to the oomycete pathogen Phytophthora brassicae despite rapid induction of HR. The susceptibility of rph1 was specific for P. brassicae and coincided with a reduced oxidative burst, a runaway cell-death response, and failure to properly activate the expression of defence-related genes. From these results, we conclude that, in the immune response to P. brassicae , (i) HR is not sufficient to stop the pathogen, (ii) HR initiation can occur in the absence of a major oxidative burst, (iii) the oxidative burst plays a role in limiting the spread of cell death, and (iv) RPH1 is a positive regulator of the P. brassicae -induced oxidative burst and enhanced expression of defence-related genes. Surprisingly, RPH1 encodes an evolutionary highly conserved chloroplast protein, indicating a function of this organelle in activation of a subset of immune reactions in response to P. brassicae . The disease resistance-related role of RPH1 was not limited to the Arabidopsis model system. Silencing of the potato homolog StRPH1 in a resistant potato cultivar caused susceptibility to the late blight pathogen Phytophthora infestans .  相似文献   
979.
A novel series of CCR5 antagonists has been identified, utilizing leads from high-throughput screening which were further modified based on insights from competitor molecules. Lead optimization was pursued by balancing opposing trends of metabolic stability and potency. Selective and potent analogs with good pharmacokinetic properties were successfully developed.  相似文献   
980.
KCNJ11-encoded Kir6.2 assembles with ATP-binding cassette sulphonylurea receptors to generate ATP-sensitive K+ (KATP) channel complexes. Expressed in tissues with dynamic metabolic flux, these evolutionarily conserved yet structurally and functionally unique heteromultimers serve as high-fidelity rheostats that adjust membrane potential-dependent cell functions to match energetic demand. Genetic defects in channel subunits disrupt the cellular homeostatic response to environmental stress, compromising organ tolerance in the adult. As maladaptation characterizes malignant KATP channelopathies, establishment of platforms to examine progression of KATP channel-dependent adaptive behaviour is warranted. Chimeras provide a powerful tool to assay the contribution of genetic variance to stress intolerance during prenatal or post-natal development. Here, KCNJ11 KATP channel gene knockout<-->wild-type chimeras were engineered through diploid aggregation. Integration of wild-type embryonic stem cells into zona pellucida-denuded morula derived from knockout embryos achieved varying degrees of incorporation of stress-tolerant tissue within the KATP channel-deficient background. Despite the stress-vulnerable phenotype of the knockout, ex vivo derived mosaic blastocysts tolerated intrauterine transfer and implantation, followed by full-term embryonic development in pseudopregnant surrogates to produce live chimeric offspring. The development of adult chimerism from the knockout<-->wild-type mosaic embryo offers thereby a new paradigm to probe the ecogenetic control of the KATP channel-dependent stress response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号