首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2319篇
  免费   209篇
  国内免费   2篇
  2023年   8篇
  2022年   25篇
  2021年   51篇
  2020年   29篇
  2019年   31篇
  2018年   41篇
  2017年   46篇
  2016年   65篇
  2015年   118篇
  2014年   121篇
  2013年   151篇
  2012年   173篇
  2011年   161篇
  2010年   111篇
  2009年   94篇
  2008年   138篇
  2007年   152篇
  2006年   108篇
  2005年   112篇
  2004年   120篇
  2003年   104篇
  2002年   98篇
  2001年   26篇
  2000年   22篇
  1999年   20篇
  1998年   26篇
  1997年   34篇
  1996年   17篇
  1995年   11篇
  1994年   11篇
  1993年   19篇
  1992年   17篇
  1991年   14篇
  1990年   24篇
  1989年   15篇
  1988年   14篇
  1987年   13篇
  1986年   9篇
  1985年   10篇
  1984年   11篇
  1983年   8篇
  1982年   13篇
  1981年   12篇
  1980年   8篇
  1979年   15篇
  1978年   11篇
  1977年   10篇
  1975年   13篇
  1974年   8篇
  1962年   7篇
排序方式: 共有2530条查询结果,搜索用时 140 毫秒
51.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   
52.
The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long‐running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought‐stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought‐induced mortality following long‐term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought‐induced mortality.  相似文献   
53.
The Cre/loxP system is a powerful tool that has allowed the study of the effects of specific genes of interest in various biological settings. The Tyr::CreERT2 system allows for the targeted expression and activity of the Cre enzyme in the melanocyte lineage following treatment with tamoxifen, thus providing spatial and temporal control of the expression of specific target genes. Two independent transgenic mouse models, each containing a Tyr::CreERT2 transgene, have been generated and are widely used to study melanocyte transformation. In this study, we performed whole genome sequencing (WGS) on genomic DNA from the two Tyr::CreERT2 mouse models and identified their sites of integration in the C57BL/6 genome. Based on these results, we designed PCR primers to accurately, and efficiently, genotype transgenic mice. Finally, we discussed some of the advantages of each transgenic mouse model.  相似文献   
54.
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF‐2 and keratin 5. In vitro analysis confirmed that FGF‐2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling–Degos Disease (DDD) have already been associated with the pheomelanosome–eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age‐related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.  相似文献   
55.
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.  相似文献   
56.
57.
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.  相似文献   
58.
One new aporphine, dicentrine-β-N-oxide ( 1 ), together with five related known alkaloids dehydrodicentrine ( 2 ), predicentrine ( 3 ), N-methyllaurotetanine ( 4 ), cassythicine ( 5 ), and dicentrine ( 6 ) were isolated from the leaves of Ocotea puberula (Lauraceae). Antiprotozoal activity of the isolated compounds was evaluated in vitro against trypomastigote forms of Trypanosoma cruzi. Among the tested compounds, alkaloid 1 exhibited higher potential with EC50 value of 18.2 μM and reduced toxicity against NCTC cells (CC50>200 μM – SI>11.0), similar to positive control benznidazole (EC50 of 17.7 μM and SI=10.7). Considering the promising results of dicentrine-β-N-oxide ( 1 ) against trypomastigotes, the mechanism of parasite death caused by this alkaloid was investigated. As observed, this compound reached the plasma membrane electric potential directly after 2 h of incubation and triggered mitochondrial depolarization, which probably leads to trypomastigote death. Therefore, dicentrine-β-N-oxide ( 1 ), reported for the first time in this work, can contribute to future works for the development of new trypanocidal agents.  相似文献   
59.
60.
Marine invertebrates have evolved multiple responses to naturally variable environmental oxygen, all aimed at either maintaining cellular oxygen homeostasis or limiting cellular damage during or after hypoxic or hyperoxic events. We assessed organismal (rates of oxygen consumption and ammonia excretion) and cellular (heat shock protein expression, anti-oxidant enzymes) responses of juvenile and adult abalone exposed to low (~ 83% of saturation), intermediate (~ 95% of saturation) and high (~ 115% of saturation) oxygen levels for one month. Using the Comet assay, we measured DNA damage to determine whether the observed trends in the protective responses were sufficient to prevent oxidative damage to cells. Juveniles were unaffected by moderately hypoxic and hyperoxic conditions. Elevated basal rates of superoxide dismutase, glutathione peroxidase and catalase were sufficient to prevent DNA fragmentation and protein damage. Adults, with their lower basal rate of anti-oxidant enzymes, had increased DNA damage under hypoxic and hyperoxic conditions, indicating that the antioxidant enzymes were unable to prevent oxidative damage under hypoxic and hyperoxic conditions. The apparent insensitivity of juvenile abalone to decreased and increased oxygen might be related to their life history and development in algal and diatom biofilms where they are exposed to extreme diurnal fluctuations in dissolved oxygen levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号