首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   483篇
  免费   33篇
  516篇
  2023年   1篇
  2022年   1篇
  2021年   10篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   2篇
  2016年   11篇
  2015年   18篇
  2014年   28篇
  2013年   26篇
  2012年   38篇
  2011年   37篇
  2010年   22篇
  2009年   24篇
  2008年   42篇
  2007年   36篇
  2006年   31篇
  2005年   28篇
  2004年   21篇
  2003年   30篇
  2002年   25篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1967年   1篇
  1961年   1篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
21.
The spectroscopy of horseradish peroxidase with and without the substrate analogue benzohydroxamic acid (BHA) was monitored in different solvents as a function of the temperature in the interval from 10 to 300 K. Thermal broadening of the Q(0,0) optical absorption band arises mainly from interaction of the electronic pi --> pi transition with the heme vibrations. In contrast, the width of the IR absorption band of CO bound to heme is controlled by the coupling of the CO transition moment to the electric field of the protein matrix. The IR bandwidth of the substrate free enzyme in the glycerol/H2O solvent hardly changes in the glassy matrix and strongly increases upon heating above the glass transition. Heating of the same enzyme in the trehalose/H2O glass considerably broadens the band. The binding of the substrate strongly diminishes the temperature broadening of the CO band. This result is consistent with the view that the BHA strongly reduces the amplitude of vibrations of the heme pocket environment. Unusually strong thermal broadening of the CO band above the glass transition is interpreted to be caused by thermal population of a very flexible excited conformational substate. The thermal broadening of the same band in the trehalose glass is caused by an increase of the protein vibrational amplitude in each of the conformational substates, their population being independent of the temperature in the glassy matrix.  相似文献   
22.
This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.  相似文献   
23.
Currently two site-specific recombinases are available for engineering the mouse genome: Cre from P1 phage and Flp from yeast. Both enzymes catalyze recombination between two 34-base pair recognition sites, lox and FRT, respectively, resulting in excision, inversion, or translocation of DNA sequences depending upon the location and the orientation of the recognition sites. Furthermore, strategies have been designed to achieve site-specific insertion or cassette exchange. The problem with both recombinase systems is that when they insert a circular DNA into the genome (trans event), two cis-positioned recognition sites are created, which are immediate substrates for excision. To stabilize the trans event, functional mutant recognition sites had to be identified. None of the systems, however, allowed efficient selection-free identification of insertion or cassette exchange. Recently, an integrase from Streptomyces phage phiC31 has been shown to function in Schizosaccharomyces pombe and mammalian cells. This enzyme recombines between two heterotypic sites: attB and attP. The product sites of the recombination event (attL and attR) are not substrates for the integrase. Therefore, the phiC31 integrase is ideal to facilitate site-specific insertions into the mammalian genome.  相似文献   
24.
Huntingtin interacting protein 1 (HIP1) is a recently identified component of clathrin-coated vesicles that plays a role in clathrin-mediated endocytosis. To explore the normal function of HIP1 in vivo, we created mice with targeted mutation in the HIP1 gene (HIP1(-/-)). HIP1(-/-) mice develop a neurological phenotype by 3 months of age manifest with a failure to thrive, tremor and a gait ataxia secondary to a rigid thoracolumbar kyphosis accompanied by decreased assembly of endocytic protein complexes on liposomal membranes. In primary hippocampal neurons, HIP1 colocalizes with GluR1-containing AMPA receptors and becomes concentrated in cell bodies following AMPA stimulation. Moreover, a profound dose-dependent defect in clathrin-mediated internalization of GluR1-containing AMPA receptors was observed in neurons from HIP1(-/-) mice. Together, these data provide strong evidence that HIP1 regulates AMPA receptor trafficking in the central nervous system through its function in clathrin-mediated endocytosis.  相似文献   
25.
Previous gene targeting studies have implicated an indispensable role of vascular endothelial growth factor (VEGF) in tumor angiogenesis, particularly in tumors of embryonal or endocrine origin. In contrast, we report here that transformation of VEGF-deficient adult fibroblasts (MDF528) with ras or neu oncogenes gives rise to highly tumorigenic and angiogenic fibrosarcomas. These aggressive VEGF-null tumors (528ras, 528neu) originated from VEGF(-/-) embryonic stem cells, which themselves were tumorigenically deficient. We also report that VEGF production by tumor stroma has a modest role in oncogene-driven tumor angiogenesis. Both ras and neu oncogenes down-regulated at least two endogenous inhibitors of angiogenesis [pigment epithelium derived factor (PEDF) and thrombospondin 1 (TSP-1)]. This is functionally important as administration of an antiangiogenic TSP-1 peptide (ABT-526) markedly inhibited growth of VEGF(-/-) tumors, with some ingress of pericytes. These results provide the first definitive genetic demonstration of the dispensability of tumor cell-derived VEGF in certain cases of 'adult' tumor angiogenesis, and thus highlight the importance of considering VEGF-independent as well as VEGF-dependent pathways when attempting to block this process pharmacologically.  相似文献   
26.
27.
Inhibition of TASK-1 potassium channel by phospholipase C   总被引:11,自引:0,他引:11  
Thetwo-pore-domain K+ channel, TASK-1, was recently shown tobe a target of receptor-mediated regulation in neurons and in adrenalglomerulosa cells. Here, we demonstrate that TASK-1 expressed inXenopus laevis oocytes is inhibited by differentCa2+-mobilizing agonists. Lysophosphatidic acid, via itsendogenous receptor, and ANG II and carbachol, via their heterologouslyexpressed ANG II type 1a and M1 muscarinic receptors,respectively, inhibit TASK-1. This effect can be mimicked by guanosine5'-O-(3-thiotriphosphate), indicating the involvementof GTP-binding protein(s). The phospholipase C inhibitor U-73122reduced the receptor-mediated inhibition of TASK-1. Downstream signalsof phospholipase C action (inositol 1,4,5-trisphosphate, cytoplasmicCa2+ concentration, and diacylglycerol) do not mediate theinhibition. Unlike the Gq-coupled receptors, stimulation ofthe Gi-activating M2 muscarinic receptorcoexpressed with TASK-1 results in an only minimal decrease of theTASK-1 current. However, additional coexpression of phospholipaseC-2 (which is responsive also to Gi-subunits) renders M2 receptor activation effective.This indicates the significance of phospholipase C activity in thereceptor-mediated inhibition of TASK-1.

  相似文献   
28.
Phase Variation in Xenorhabdus nematophilus   总被引:4,自引:0,他引:4       下载免费PDF全文
Xenorhabdus nematophilus is a symbiotic bacterium that inhabits the intestine of entomopathogenic nematodes. The bacterium-nematode symbiotic pair is pathogenic for larval-stage insects. The phase I cell type is the form of the bacterium normally associated with the nematode. A variant cell type, referred to as phase II, can form spontaneously under stationary-phase conditions. Phase II cells do not elaborate products normally associated with the phase I cell type. To better define phase variation in X. nematophilus, several strains (19061, AN6, F1, N2-4) of this bacterium were analyzed for new phenotypic traits. An analysis of pathogenicity in Manduca sexta larvae revealed that the phase II form of AN6 (AN6/II) was significantly less virulent than the phase I form (AN6/I). The variant form of N2-4 was also avirulent. On the other hand, F1/II and 19061/II were as virulent as the respective phase I cells. Strain 19061/II was found to be motile, and AN6/II regained motility when the bacteria were grown in low-osmolarity medium. In contrast, F1/II remained nonmotile. The phase II cells did not produce the outer membrane protein, OpnB, that is normally induced during the stationary phase. Both phase I and phase II cells were able to support nematode growth and development. These findings indicate that while certain phenotypic traits are common to all phase II cells, other characteristics, such as virulence and motility, are variable and can be influenced by environmental conditions.  相似文献   
29.

Background

Roux-en-Y gastric bypass (RYGB) surgery is a very effective bariatric procedure to achieve significant and sustained weight loss, yet little is known about the procedure’s impact on the brain. This study examined the effects of RYGB on the brain’s response to the anticipation of highly palatable versus regular food.

Methods

High fat diet-induced obese rats underwent RYGB or sham operation and were then tested for conditioned place preference (CPP) for the bacon-paired chamber, relative to the chow-paired chamber. After CPP, animals were placed in either chamber without the food stimulus, and brain-glucose metabolism (BGluM) was measured using positron emission tomography (μPET).

Results

Bacon CPP was only observed in RYGB rats that had stable weight loss following surgery. BGluM assessment revealed that RYGB selectively activated regions of the right and midline cerebellum (Lob 8) involved in subjective processes related to reward or expectation. Also, bacon anticipation led to significant activation in the medial parabrachial nuclei (important in gustatory processing) and dorsomedial tegmental area (key to reward, motivation, cognition and addiction) in RYGB rats; and activation in the retrosplenial cortex (default mode network), and the primary visual cortex in control rats.

Conclusions

RYGB alters brain activity in areas involved in reward expectation and sensory (taste) processing when anticipating a palatable fatty food. Thus, RYGB may lead to changes in brain activity in regions that process reward and taste-related behaviors. Specific cerebellar regions with altered metabolism following RYGB may help identify novel therapeutic targets for treatment of obesity.  相似文献   
30.
Podosomes are transient cell surface structures essential for degradation of extracellular matrix during cell invasion. Protein kinase C (PKC) is involved in the regulation of podosome formation; however, the roles of individual PKC isoforms in podosome formation and proteolytic function are largely unknown. Recently, we reported that PDBu, a PKC activator, induced podosome formation in normal human bronchial epithelial cells. Here, we demonstrate that phorbol-12,13-dibutyrate (PDBu)-induced podosome formation is mainly mediated through redistribution of conventional PKCs, especially PKCα, from the cytosol to the podosomes. Interestingly, although blocking atypical PKCζ did not affect PDBu-induced podosome formation, it significantly reduced matrix degradation at podosomes. Inhibition of PKCζ reduced recruitment of matrix metalloprotease 9 (MMP-9) to podosomes and its release and activation. Downregulation of MMP-9 by small interfering RNA (siRNA) or neutralization antibody also significantly reduced matrix degradation. The regulatory effects of PKCζ on matrix degradation and recruitment of MMP-9 to podosomes were PKCζ kinase activity dependent. PDBu-induced recruitment of PKCζ and MMP-9 to podosomes was blocked by inhibition of novel PKC with rottlerin or PKCδ siRNA. Our data suggest that multiple PKC isozymes form a signaling cascade that controls podosome formation and dynamics and MMP-9 recruitment, release, and activation in a coordinated fashion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号