首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   32篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   2篇
  2016年   10篇
  2015年   16篇
  2014年   25篇
  2013年   22篇
  2012年   40篇
  2011年   32篇
  2010年   19篇
  2009年   22篇
  2008年   41篇
  2007年   41篇
  2006年   38篇
  2005年   29篇
  2004年   21篇
  2003年   36篇
  2002年   28篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1961年   1篇
排序方式: 共有542条查询结果,搜索用时 31 毫秒
81.
Neuroblastoma (NB) is an extra cranial pediatric embryonal tumor most prevalent in children less than 1 year of age. NB accounts for 7% of all pediatric cancers but accounts for 15% of all childhood cancer deaths. Scavenger receptor class B type 1 (SR-B1), a mediator of cellular cholesterol uptake, is overexpressed in and have been linked to the aggressiveness of many cancers. Nevertheless, no studies have so far investigated the relationship between SR-B1 and NB. Elucidation of receptors that promote NB may pave the way for discovery of new therapeutic targets. Here we show that inhibition of SR-B1 reduced cell survival, migration and invasion, and cholesterol content in NB cell lines. Additionally analysis of SR-B1 levels in NB patient biopsies using the R2: Genomics Analysis and Visualization Platform showed that high SR-B1 expression correlated with decreased overall and event-free survival.  相似文献   
82.
Rat posterior eyecups containing the retina were prepared, loaded with [3H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [3H]glycine release, an effect that was found to be external Ca2+-independent. Whereas oxygen and glucose deprivation increased [3H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [3H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [3H]glycine release. Oxygen and glucose deprivation also evoked [3H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [3H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [3H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca2+-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na+–K+-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-d-glucose, led to increase of retinal [3H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-d-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of impaired cellular energy homeostasis. Immunohistochemical studies revealed that glycine transporter type-1, of which reverse mode operation assures [3H]glycine release, is expressed in amacrine cells in the inner nuclear and plexiform layers of the retina and also in Müller macroglia cells. We conclude that disruption of the balanced normal/reverse mode operation of glycine transporter type-1 is likely a significant factor contributing to neurotoxic processes of the retina. The possibility to inhibit glycine transporter type-1 mediated glycine efflux by drugs more potently than glycine uptake might offer some therapeutic potential for the treatment of various neurodegenerative disorders of the retina.  相似文献   
83.
Cryopreservation of bovine oocytes would be beneficial both for nuclear transfer and for preservation efforts. The overall objective of this study was to evaluate the viability as well as the cryodamage to the nucleus vs. cytoplasm of bovine oocytes following freezing-thawing of oocytes at immature (GV) and matured (MII) stages using in vitro fertilization (IVF), parthenogenetic activation, or nuclear transfer assays. Oocytes were collected from slaughterhouse ovaries. Oocytes at the GV, MII, or MII but enucleated (MIIe) stages were cryopreserved in 5% (v/v) ethylene glycol; 6% (v/v) 1,2-propanediol; and 0.1-M sucrose in PBS supplemented with 20% (v/v) fetal bovine serum. Frozen-thawed oocytes were subjected to IVF, parthenogenetic activation, or nuclear transfer assays. Significantly fewer GV oocytes survived (i.e., remained morphologically intact during freezing-thawing) than did MII oocytes (47% vs. 84%). Subsequent development of the surviving frozen-thawed GV and MII oocytes was not different (58% and 60% cleavage development; 7% and 12% blastocyst development at Day 9, respectively, P > 0.05). Parthenogenetic activation of frozen-thawed oocytes resulted in significantly lower rates of blastocyst development for the GV than the MII oocyte groups (1% vs. 14%). Nuclear transfer with cytoplasts derived from frozen-thawed GV, MII, MIIe, and fresh-MII control oocytes resulted in 5%, 16%, 14%, and 17% blastocyst development, respectively. However, results of preliminary embryo transfer trials showed that fewer pregnancies were produced from cloned embryos derived from frozen oocytes or cytoplasts (9%, n = 11 embryos) than from fresh ones (19%, n = 21 embryos). Transfer of embryos derived by IVF from cryopreserved GV and MII oocytes also resulted in term development of calves. Our results showed that both GV and MII oocytes could survive freezing and were capable of developing into offspring following IVF or nuclear transfer. However, blastocyst development of frozen-thawed oocytes remains poorer than that of fresh oocytes, and our nuclear transfer assay suggests that this poorer development was likely caused by cryodamage to the oocyte cytoplasm as well as to the nucleus. Mol. Reprod. Dev. 51:281–286, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
84.
Rap1 enhances integrin-mediated adhesion but the link between Rap1 activation and integrin function in collagen phagocytosis is not defined. Mass spectrometry of Rap1 immunoprecipitates showed that the association of Rap1 with nonmuscle myosin heavy-chain II-A (NMHC II-A) was enhanced by cell attachment to collagen beads. Rap1 colocalized with NM II-A at collagen bead-binding sites. There was a transient increase in myosin light-chain phosphorylation after collagen-bead binding that was dependent on myosin light-chain kinase but not Rho kinase. Inhibition of myosin light-chain phosphorylation, but not myosin II-A motor activity inhibited collagen-bead binding and Rap activation. In vitro binding assays demonstrated binding of Rap1A to filamentous myosin rods, and in situ staining of permeabilized cells showed that NM II-A filaments colocalized with F-actin at collagen bead sites. Knockdown of NM II-A did not affect talin, actin, or β1-integrin targeting to collagen beads but targeting of Rap1 and vinculin to collagen was inhibited. Conversely, knockdown of Rap1 did not affect localization of NM II-A to beads. We conclude that MLC phosphorylation in response to initial collagen-bead binding promotes NM II-A filament assembly; binding of Rap1 to myosin filaments enables Rap1-dependent integrin activation and enhanced collagen phagocytosis.  相似文献   
85.
MOTIVATION: Prediction of disulfide bond connectivity facilitates structural and functional annotation of proteins. Previous studies suggest that cysteines of a disulfide bond mutate in a correlated manner. RESULTS: We developed a method that analyzes correlated mutation patterns in multiple sequence alignments in order to predict disulfide bond connectivity. Proteins with known experimental structures and varying numbers of disulfide bonds, and that spanned various evolutionary distances, were aligned. We observed frequent variation of disulfide bond connectivity within members of the same protein families, and it was also observed that in 99% of the cases, cysteine pairs forming non-conserved disulfide bonds mutated in concert. Our data support the notion that substitution of a cysteine in a disulfide bond prompts the substitution of its cysteine partner and that oxidized cysteines appear in pairs. The method we developed predicts disulfide bond connectivity patterns with accuracies of 73, 69 and 61% for proteins with two, three and four disulfide bonds, respectively.  相似文献   
86.
The aim of our study was to determine the activity of antioxidant defence (AD) enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and the phase II biotransformation enzyme glutathione-S-transferase (GST) in the hepatopancreas, the gills and muscle of Spiny cheek crayfish (Orconectes limosus) from the River Danube and to compare tissue specificities of investigated enzymes. Our results indicated that both specific and total SOD activities in the hepatopancreas were lower compared to the gills and muscle. Total SOD activity in the gills was lower with respect to that in muscle. CAT and GSH-Px (both specific and total) activities were higher in the hepatopancreas compared to those in the gills and muscle. In the gills the specific and total GR activities were higher than in the hepatopancreas and muscle. The specific and total GST activities were higher in the hepatopancreas compared with the gills and muscle. Our study represents the first comprehensive report of AD enzymes in tissues of O. limosus caught in the River Danube. The noted tissue distributions of the investigated AD enzyme activities most likely reflected different metabolic activities and different responses to environmental conditions in the examined tissues.  相似文献   
87.
We report the integration of a type II restriction-methylase, mFokI, into the tobacco chloroplast genome and we demonstrate that the introduced enzyme effectively directs the methylation of its target sequence in vivo and does not affect maternal inheritance. We further report the transformation of tobacco with an E. coli dcm methylase targeted to plastids and we demonstrate efficient cytosine methylation of the plastid genome. Both adenosine methylation of FokI sites and cytosine methylation of dcm sites appeared phenotypically neutral. The ability to tolerate such plastid genome methylation is a pre-requisite for a proposed plant transgene containment system. In such a system, a chloroplast located, maternally inherited restriction methylase would provide protection from a nuclear-encoded, plastid targeted restriction endonuclease. As plastids are not paternally inherited in most crop species, pollen from such plants would carry the endonuclease transgene but not the corresponding methylase; the consequence of this should be containment of all nuclear transgenes, as pollination will only be viable in crosses to the appropriate transplastomic maternal background.  相似文献   
88.
Having an effective means to cryopreserve human oocytes would offer more flexibility in healthcare services for infertility patients, and obviate cryopreservation of preimplantation embryos. It is essential to establish good animal models for human oocyte cryopreservation and the rabbit is a good candidate. Attempts to improve oocyte cryopreservation are often empirical, with results often being irreproducible. Cryopreservation protocols may be optimized by modeling the changes in oocyte volume and the associated damages incurred during the addition and dilution of cryoprotective agents (CPA). The objectives of the current study were to determine cryobiological properties of rabbit oocytes, including the isotonic volume, osmotically inactive cell fraction (Vb), hydraulic conductivity (Lp), permeability (Ps) to dimethylsulfoxide (Me2SO), ethylene glycol (EG), and glycerol (GLY) and to examine the correlation between cell volume excursions and viability. This has led to the development of the accumulative osmotic damage (AOD) model associated with the processes of CPA addition/dilution. Mature rabbit oocytes were perfused with 15% (V/V) CPA medium (dissolved in 1× PBS). The osmotic responses of the oocytes were videotaped. A two-parameter model was fit to the experimental data to determine the values of Lp and Ps. Oocyte volumes reached upon equilibration with 285, 600, 900, and 1200 mOsm (milliosmolal) solutions of non-permeating compounds were plotted in a Boyle van’t Hoff plot. The average radius of rabbit oocytes in an isotonic solution was determined to be 55.7 ± 1.2 μm (n = 16). The rabbit oocyte exhibited an “ideal” osmotic response in the range from iso-osmolity to 1200 mOsm. The Vb was determined to be 20% of the isotonic value with r2 = 0.97. The values of Lp were determined to be 0.79 ± 0.26, 0.82 ± 0.22, and 0.64 ± 0.16 μm min−1 atm−1 and the Ps values were determined to be 2.9 ± 1.3, 2.7 ± 1.3, and 0.27 ± 0.18 × 10−3 cm min−1 for Me2SO, EG and GLY, respectively. There were no significant differences (p > 0.05) between values for Lp and PS in the presence of the Me2SO and EG. However, these values were significantly different from the values in presence of GLY. We calculated the AOD values of those oocytes that experienced the process of CPA additions/dilutions and found that these values were highly correlated to the development rates of these oocytes after parthenogenetic activation (r = −0.98).  相似文献   
89.
The MSMEG_4626 gene was cloned from Mycobacterium smegmatis MC2 155. It codes for a protein of 1,037 amino acids, identified as ribonuclease E by matching to the protein family HMM TIGR00757. The protein was expressed and purified. Although its calculated molecular weight is 112.7 kDa, it has an aberrant mobility in SDS-polyacrylamide gels, like other ribonuclease E enzymes (it migrates as a 180 kDa protein). The central part of the protein displays high similarity to the catalytic domains of other RNase E enzymes. Mass spectrometric analysis revealed the presence of the chaperonin GroEL, ribosomal proteins, a negative regulator of genetic competence and GTP pyrophosphokinase in the affinity-purified preparation. It is a very unstable protein; despite the use of protease inhibitors in addition to the full-length RNase E its proteolytic fragments were detected.  相似文献   
90.
In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号