首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   27篇
  454篇
  2023年   1篇
  2022年   1篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   9篇
  2015年   16篇
  2014年   22篇
  2013年   22篇
  2012年   37篇
  2011年   32篇
  2010年   19篇
  2009年   20篇
  2008年   40篇
  2007年   35篇
  2006年   31篇
  2005年   25篇
  2004年   20篇
  2003年   30篇
  2002年   24篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1967年   1篇
  1961年   1篇
排序方式: 共有454条查询结果,搜索用时 15 毫秒
31.
The transfer of Ca2+ from the cytosol into the lumen of mitochondria is a crucial process that impacts cell signaling in multiple ways. Cytosolic Ca2+ ([Ca2+]cyto) can be excellently quantified with the ratiometric Ca2+ probe fura-2, while genetically encoded Förster resonance energy transfer (FRET)-based fluorescent Ca2+ sensors, the cameleons, are efficiently used to specifically measure Ca2+ within organelles. However, because of a significant overlap of the fura-2 emission with the spectra of the cyan and yellow fluorescent protein of most of the existing cameleons, the measurement of fura-2 and cameleons within one given cell is a complex task. In this study, we introduce a novel approach to simultaneously assess [Ca2+]cyto and mitochondrial Ca2+ ([Ca2+]mito) signals at the single cell level. In order to eliminate the spectral overlap we developed a novel red-shifted cameleon, D1GO-Cam, in which the green and orange fluorescent proteins were used as the FRET pair. This ratiometric Ca2+ probe could be successfully targeted to mitochondria and was suitable to be used simultaneously with fura-2 to correlate [Ca2+]cyto and [Ca2+]mito within same individual cells. Our data indicate that depending on the kinetics of [Ca2+]cyto rises there is a significant lag between onset of [Ca2+]cyto and [Ca2+]mito signals, pointing to a certain threshold of [Ca2+]cyto necessary to activate mitochondrial Ca2+ uptake. The temporal correlation between [Ca2+]mito and [Ca2+]cyto as well as the efficiency of the transfer of Ca2+ from the cytosol into mitochondria varies between different cell types. Moreover, slow mitochondrial Ca2+ extrusion and a desensitization of mitochondrial Ca2+ uptake cause a clear difference in patterns of mitochondrial and cytosolic Ca2+ oscillations of pancreatic beta-cells in response to D-glucose.  相似文献   
32.
33.
Among the different factors which can contribute to CNS alterations associated with HIV infection, Tat protein is considered to play a critical role. Evidence indicates that Tat can contribute to brain vascular pathology through induction of endothelial cell activation. In the present study, we hypothesized that Tat can affect expression of P-glycoprotein (P-gp) in brain microvascular endothelial cells (BMEC). P-gp is an ATP-dependent cellular efflux transporter which is involved in the removal of specific non-polar molecules, including drugs used for highly active antiretroviral therapy (HAART). Treatment of BMEC with Tat(1-72) resulted in P-gp overexpression both at mRNA and protein levels. These alterations were confirmed in vivo in brain vessels of mice injected with Tat(1-72) into the hippocampus. Furthermore, pre-treatment of BMEC with SN50, a specific NF-kappaB inhibitor, protected against Tat(1-72)-stimulated expression of mdr1a gene, i.e. the gene which encodes for P-gp in rodents. Tat(1-72)-mediated changes in P-gp expression were correlated with increased rhodamine 123 efflux, indicating the up-regulation of transporter functions of P-gp. These results suggest that Tat-induced overexpression of P-gp in brain microvessels may have significant implications for the development of resistance to HAART and may be a contributing factor for low efficacy of HAART in the CNS.  相似文献   
34.
Having an effective means to cryopreserve human oocytes would offer more flexibility in healthcare services for infertility patients, and obviate cryopreservation of preimplantation embryos. It is essential to establish good animal models for human oocyte cryopreservation and the rabbit is a good candidate. Attempts to improve oocyte cryopreservation are often empirical, with results often being irreproducible. Cryopreservation protocols may be optimized by modeling the changes in oocyte volume and the associated damages incurred during the addition and dilution of cryoprotective agents (CPA). The objectives of the current study were to determine cryobiological properties of rabbit oocytes, including the isotonic volume, osmotically inactive cell fraction (Vb), hydraulic conductivity (Lp), permeability (Ps) to dimethylsulfoxide (Me2SO), ethylene glycol (EG), and glycerol (GLY) and to examine the correlation between cell volume excursions and viability. This has led to the development of the accumulative osmotic damage (AOD) model associated with the processes of CPA addition/dilution. Mature rabbit oocytes were perfused with 15% (V/V) CPA medium (dissolved in 1× PBS). The osmotic responses of the oocytes were videotaped. A two-parameter model was fit to the experimental data to determine the values of Lp and Ps. Oocyte volumes reached upon equilibration with 285, 600, 900, and 1200 mOsm (milliosmolal) solutions of non-permeating compounds were plotted in a Boyle van’t Hoff plot. The average radius of rabbit oocytes in an isotonic solution was determined to be 55.7 ± 1.2 μm (n = 16). The rabbit oocyte exhibited an “ideal” osmotic response in the range from iso-osmolity to 1200 mOsm. The Vb was determined to be 20% of the isotonic value with r2 = 0.97. The values of Lp were determined to be 0.79 ± 0.26, 0.82 ± 0.22, and 0.64 ± 0.16 μm min−1 atm−1 and the Ps values were determined to be 2.9 ± 1.3, 2.7 ± 1.3, and 0.27 ± 0.18 × 10−3 cm min−1 for Me2SO, EG and GLY, respectively. There were no significant differences (p > 0.05) between values for Lp and PS in the presence of the Me2SO and EG. However, these values were significantly different from the values in presence of GLY. We calculated the AOD values of those oocytes that experienced the process of CPA additions/dilutions and found that these values were highly correlated to the development rates of these oocytes after parthenogenetic activation (r = −0.98).  相似文献   
35.
MOTIVATION: Prediction of disulfide bond connectivity facilitates structural and functional annotation of proteins. Previous studies suggest that cysteines of a disulfide bond mutate in a correlated manner. RESULTS: We developed a method that analyzes correlated mutation patterns in multiple sequence alignments in order to predict disulfide bond connectivity. Proteins with known experimental structures and varying numbers of disulfide bonds, and that spanned various evolutionary distances, were aligned. We observed frequent variation of disulfide bond connectivity within members of the same protein families, and it was also observed that in 99% of the cases, cysteine pairs forming non-conserved disulfide bonds mutated in concert. Our data support the notion that substitution of a cysteine in a disulfide bond prompts the substitution of its cysteine partner and that oxidized cysteines appear in pairs. The method we developed predicts disulfide bond connectivity patterns with accuracies of 73, 69 and 61% for proteins with two, three and four disulfide bonds, respectively.  相似文献   
36.
37.
Rap1 enhances integrin-mediated adhesion but the link between Rap1 activation and integrin function in collagen phagocytosis is not defined. Mass spectrometry of Rap1 immunoprecipitates showed that the association of Rap1 with nonmuscle myosin heavy-chain II-A (NMHC II-A) was enhanced by cell attachment to collagen beads. Rap1 colocalized with NM II-A at collagen bead-binding sites. There was a transient increase in myosin light-chain phosphorylation after collagen-bead binding that was dependent on myosin light-chain kinase but not Rho kinase. Inhibition of myosin light-chain phosphorylation, but not myosin II-A motor activity inhibited collagen-bead binding and Rap activation. In vitro binding assays demonstrated binding of Rap1A to filamentous myosin rods, and in situ staining of permeabilized cells showed that NM II-A filaments colocalized with F-actin at collagen bead sites. Knockdown of NM II-A did not affect talin, actin, or β1-integrin targeting to collagen beads but targeting of Rap1 and vinculin to collagen was inhibited. Conversely, knockdown of Rap1 did not affect localization of NM II-A to beads. We conclude that MLC phosphorylation in response to initial collagen-bead binding promotes NM II-A filament assembly; binding of Rap1 to myosin filaments enables Rap1-dependent integrin activation and enhanced collagen phagocytosis.  相似文献   
38.
We identified a sequence homologous to the Bcl-2 homology 3 (BH3) domain of Bcl-2 proteins in SOUL. Tissues expressed the protein to different extents. It was predominantly located in the cytoplasm, although a fraction of SOUL was associated with the mitochondria that increased upon oxidative stress. Recombinant SOUL protein facilitated mitochondrial permeability transition and collapse of mitochondrial membrane potential (MMP) and facilitated the release of proapoptotic mitochondrial intermembrane proteins (PMIP) at low calcium and phosphate concentrations in a cyclosporine A-dependent manner in vitro in isolated mitochondria. Suppression of endogenous SOUL by diced small interfering RNA in HeLa cells increased their viability in oxidative stress. Overexpression of SOUL in NIH3T3 cells promoted hydrogen peroxide-induced cell death and stimulated the release of PMIP but did not enhance caspase-3 activation. Despite the release of PMIP, SOUL facilitated predominantly necrotic cell death, as revealed by annexin V and propidium iodide staining. This necrotic death could be the result of SOUL-facilitated collapse of MMP demonstrated by JC-1 fluorescence. Deletion of the putative BH3 domain sequence prevented all of these effects of SOUL. Suppression of cyclophilin D prevented these effects too, indicating that SOUL facilitated mitochondrial permeability transition in vivo. Overexpression of Bcl-2 and Bcl-xL, which can counteract the mitochondria-permeabilizing effect of BH3 domain proteins, also prevented SOUL-facilitated collapse of MMP and cell death. These data indicate that SOUL can be a novel member of the BH3 domain-only proteins that cannot induce cell death alone but can facilitate both outer and inner mitochondrial membrane permeabilization and predominantly necrotic cell death in oxidative stress.  相似文献   
39.
Huntingtin interacting protein 1 (HIP1) is a recently identified component of clathrin-coated vesicles that plays a role in clathrin-mediated endocytosis. To explore the normal function of HIP1 in vivo, we created mice with targeted mutation in the HIP1 gene (HIP1(-/-)). HIP1(-/-) mice develop a neurological phenotype by 3 months of age manifest with a failure to thrive, tremor and a gait ataxia secondary to a rigid thoracolumbar kyphosis accompanied by decreased assembly of endocytic protein complexes on liposomal membranes. In primary hippocampal neurons, HIP1 colocalizes with GluR1-containing AMPA receptors and becomes concentrated in cell bodies following AMPA stimulation. Moreover, a profound dose-dependent defect in clathrin-mediated internalization of GluR1-containing AMPA receptors was observed in neurons from HIP1(-/-) mice. Together, these data provide strong evidence that HIP1 regulates AMPA receptor trafficking in the central nervous system through its function in clathrin-mediated endocytosis.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号