首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   673篇
  免费   67篇
  2022年   2篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   12篇
  2017年   8篇
  2016年   18篇
  2015年   24篇
  2014年   31篇
  2013年   32篇
  2012年   55篇
  2011年   47篇
  2010年   33篇
  2009年   26篇
  2008年   55篇
  2007年   43篇
  2006年   49篇
  2005年   36篇
  2004年   31篇
  2003年   38篇
  2002年   35篇
  2001年   18篇
  2000年   7篇
  1999年   7篇
  1998年   8篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1975年   5篇
  1974年   4篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1961年   2篇
  1957年   1篇
排序方式: 共有740条查询结果,搜索用时 15 毫秒
71.
The heart very often becomes a victim of endocrine abnormalities such as thyroid hormone imbalance and insulin deficiency, which are manifested in a broad spectrum of cardiac dysfunction from mildly compromised function to severe heart failure. These functional changes in the heart are largely independent of alterations in the coronary arteries and instead reside at the level of cardiomyocytes. The status of cardiac function reflects the net of underlying subcellular modifications induced by an increase or decrease in thyroid hormone and insulin plasma levels. Changes in the contractile and regulatory proteins constitute molecular and structural alterations in myofibrillar assembly, called myofibrillar remodeling. These alterations may be adaptive or maladaptive with respect to the functional and metabolic demands on the heart as a consequence of the altered endocrine status in the body. There is a substantial body of information to indicate alterations in myofibrillar proteins including actin, myosin, tropomyosin, troponin, titin, desmin, and myosin-binding protein C in conditions such as hyperthyroidism, hypothyroidism, and diabetes. The present article is focussed on discussion how myofibrillar proteins are altered in response to thyroid hormone imbalance and lack of insulin or its responsiveness, and how their structural and functional changes explain the contractile defects in the heart.  相似文献   
72.
73.
Ser/Arg (SR)-rich proteins are important splicing factors in both general and alternative splicing. By binding to specific sequences on pre-mRNA and interacting with other splicing factors via their RS domain they mediate different intraspliceosomal contacts, thereby helping in splice site selection and spliceosome assembly. While characterizing new members of this protein family in Arabidopsis, we have identified two proteins, termed CypRS64 and CypRS92, consisting of an N-terminal peptidyl-prolyl cis/trans isomerase domain and a C-terminal domain with many SR/SP dipeptides. Cyclophilins possess a peptidyl-prolyl cis/trans isomerase activity and are implicated in protein folding, assembly, and transport. CypRS64 interacts in vivo and in vitro with a subset of Arabidopsis SR proteins, including SRp30 and SRp34/SR1, two homologs of mammalian SF2/ASF, known to be important for 5' splice site recognition. In addition, both cyclophilins interact with U1-70K and U11-35K, which in turn are binding partners of SRp34/SR1. CypRS64 is a nucleoplasmic protein, but in most cells expressing CypRS64-GFP fusion it was also found in one to six round nuclear bodies. However, co-expression of CypRS64 with its binding partners resulted in re-localization of CypRS64 from the nuclear bodies to nuclear speckles, indicating functional interactions. These findings together with the observation that binding of SRp34/SR1 to CypRS64 is phosphorylation-dependent indicate an involvement of CypRS64 in nuclear pre-mRNA splicing, possibly by regulating phosphorylation/dephosphorylation of SR proteins and other spliceosomal components. Alternatively, binding of CypRS64 to proteins important for 5' splice site recognition suggests its involvement in the dynamics of spliceosome assembly.  相似文献   
74.
The inositol lipid and phosphate binding properties and the cellular localization of phospholipase Cdelta(4) (PLCdelta(4)) and its isolated pleckstrin homology (PH) domain were analyzed in comparison with the similar features of the PLCdelta(1) protein. The isolated PH domains of both proteins showed plasma membrane localization when expressed in the form of a green fluorescent protein fusion construct in various cells, although a significantly lower proportion of the PLCdelta(4) PH domain was membrane-bound than in the case of PLCdelta(1)PH-GFP. Both PH domains selectively recognized phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), but a lower binding of PLCdelta(4)PH to lipid vesicles containing PI(4,5)P(2) was observed. Also, higher concentrations of inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) were required to displace the PLCdelta(4)PH from the lipid vesicles, and a lower Ins(1,4,5)P(3) affinity of PLCdelta(4)PH was found in direct Ins(1,4,5)P(3) binding assays. In sharp contrast to the localization of its PH domain, the full-length PLCdelta(4) protein localized primarily to intracellular membranes mostly to the endoplasmic reticulum (ER). This ER localization was in striking contrast to the well documented PH domain-dependent plasma membrane localization of PLCdelta(1). A truncated PLCdelta(4) protein lacking the entire PH domain still showed the same ER localization as the full-length protein, indicating that the PH domain is not a critical determinant of the localization of this protein. Most important, the full-length PLCdelta(4) enzyme still showed binding to PI(4,5)P(2)-containing micelles, but Ins(1,4,5)P(3) was significantly less potent in displacing the enzyme from the lipid than with the PLCdelta(1) protein. These data suggest that although structurally related, PLCdelta(1) and PLCdelta(4) are probably differentially regulated in distinct cellular compartments by PI(4,5)P(2) and that the PH domain of PLCdelta(4) does not act as a localization signal.  相似文献   
75.
76.
There is increasing evidence in both plants and animals that epigenetic marks are not always cleared between generations. Incomplete erasure at genes associated with a measurable phenotype results in unusual patterns of inheritance from one generation to the next, termed transgenerational epigenetic inheritance. The Agouti viable yellow (Avy) allele is the best-studied example of this phenomenon in mice. The Avy allele is the result of a retrotransposon insertion upstream of the Agouti gene. Expression at this locus is controlled by the long terminal repeat (LTR) of the retrotransposon, and expression results in a yellow coat and correlates with hypomethylation of the LTR. Isogenic mice display variable expressivity, resulting in mice with a range of coat colours, from yellow through to agouti. Agouti mice have a methylated LTR. The locus displays epigenetic inheritance following maternal but not paternal transmission; yellow mothers produce more yellow offspring than agouti mothers. We have analysed the DNA methylation in mature gametes, zygotes, and blastocysts and found that the paternally and maternally inherited alleles are treated differently. The paternally inherited allele is demethylated rapidly, and the maternal allele is demethylated more slowly, in a manner similar to that of nonimprinted single-copy genes. Interestingly, following maternal transmission of the allele, there is no DNA methylation in the blastocyst, suggesting that DNA methylation is not the inherited mark. We have independent support for this conclusion from studies that do not involve direct analysis of DNA methylation. Haplo-insufficiency for Mel18, a polycomb group protein, introduces epigenetic inheritance at a paternally derived Avy allele, and the pedigrees reveal that this occurs after zygotic genome activation and, therefore, despite the rapid demethylation of the locus.  相似文献   
77.
We identified a sequence homologous to the Bcl-2 homology 3 (BH3) domain of Bcl-2 proteins in SOUL. Tissues expressed the protein to different extents. It was predominantly located in the cytoplasm, although a fraction of SOUL was associated with the mitochondria that increased upon oxidative stress. Recombinant SOUL protein facilitated mitochondrial permeability transition and collapse of mitochondrial membrane potential (MMP) and facilitated the release of proapoptotic mitochondrial intermembrane proteins (PMIP) at low calcium and phosphate concentrations in a cyclosporine A-dependent manner in vitro in isolated mitochondria. Suppression of endogenous SOUL by diced small interfering RNA in HeLa cells increased their viability in oxidative stress. Overexpression of SOUL in NIH3T3 cells promoted hydrogen peroxide-induced cell death and stimulated the release of PMIP but did not enhance caspase-3 activation. Despite the release of PMIP, SOUL facilitated predominantly necrotic cell death, as revealed by annexin V and propidium iodide staining. This necrotic death could be the result of SOUL-facilitated collapse of MMP demonstrated by JC-1 fluorescence. Deletion of the putative BH3 domain sequence prevented all of these effects of SOUL. Suppression of cyclophilin D prevented these effects too, indicating that SOUL facilitated mitochondrial permeability transition in vivo. Overexpression of Bcl-2 and Bcl-xL, which can counteract the mitochondria-permeabilizing effect of BH3 domain proteins, also prevented SOUL-facilitated collapse of MMP and cell death. These data indicate that SOUL can be a novel member of the BH3 domain-only proteins that cannot induce cell death alone but can facilitate both outer and inner mitochondrial membrane permeabilization and predominantly necrotic cell death in oxidative stress.  相似文献   
78.
Quiescent satellite cells sit on the surface of the muscle fibres under the basal lamina and are activated by a variety of stimuli to disengage, divide and differentiate into myoblasts that can regenerate or repair muscle fibres. Satellite cells adopt their parent's fibre type and must have some means of communication with the parent fibre. The mechanisms behind this communication are not known. We show here that satellite cells form dynamic connections with muscle fibres and other satellite cells by F‐actin based tunnelling nanotubes (TNTs). Our results show that TNTs readily develop between satellite cells and muscle fibres. Once developed, TNTs permit transport of intracellular material, and even cellular organelles such as mitochondria between the muscle fibre and satellite cells. The onset of satellite cell differentiation markers Pax‐7 and MyoD expression was slower in satellite cells cultured in the absence than in the presence of muscle cells. Furthermore physical contact between myofibre and satellite cell progeny is required to maintain subtype identity. Our data establish that TNTs constitute an integral part of myogenic cell communication and that physical cellular interaction control myogenic cell fate determination. J. Cell. Physiol. 223: 376–383, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
79.
Inducible costimulator (ICOS) ligand (ICOSL), a B7-related transmembrane glycoprotein with extracellular IgV and IgC domains, binds to ICOS on activated T cells and delivers a positive costimulatory signal for optimal T cell function. Toward determining the structural features of ICOSL crucial for its costimulatory function, the present study shows that ICOSL displays a marked oligomerization potential, resembling more like B7-1 than B7-2. Use of ICOSL constructs lacking either the IgC or IgV domain demonstrates that receptor binding is mediated solely by the IgV domain but requires the IgC domain for maintaining the structural integrity of the protein. To map further the receptor recognition surface on ICOSL, a homology-based protein structure model of the ICOS:ICOSL complex was constructed. Based on predictions from the model, a series of mutations were generated targeting the potential receptor binding surface on ICOSL, and the mutants were tested for their biological function in terms of ICOS binding and T cell costimulation ability. The results provide experimental validation of the model and show that the receptor binding site on ICOSL is constituted chiefly by aromatic/hydrophobic residues. Critical ICOSL residues essential for ICOS binding map to the GFCC'C' beta-sheet face of the IgV domain and approximately overlap with the B7-1/B7-2 motif(s) that recognize CD28/CTLA-4. Altogether, similar structural features of ICOSL and B7 isoforms suggest a close evolutionary relationship between these costimulatory ligands, yet differences at the same time explain their unique specificity for the cognate binding partners, ICOS and CD28/CTLA-4, respectively.  相似文献   
80.
Differences in murine follicular dendritic cells (FDC)-CD23 expression under Th1 vs Th2 conditions prompted the hypothesis that T cells help regulate the phenotype of FDCs. FDCs express CD40, suggesting that T cell-CD40L and lymphokines may be involved in regulating FDC-CD23. To test this, highly enriched FDCs were incubated with CD40L trimer or anti-CD40 to mimic T cell signaling in the presence of IFN-gamma or IL-4. Surface expression of CD23 was determined by flow cytometry, whereas mRNA levels of CD23 and its isoforms CD23a and CD23b were independently measured by quantitative PCR. When FDCs were incubated with either CD40L trimer or agonistic anti-CD40 Ab, the expression of FDC-CD23 was increased both at the mRNA and protein levels. Moreover, engagement of FDC-CD40 enhanced mRNA levels for both CD23a and CD23b isoforms. In addition, IFN-gamma substantially enhanced CD23a and CD23b mRNA levels in CD40-stimulated FDCs. Curiously, IL-4 could also up-regulate FDC-CD23a but not -CD23b. Anti-IFN-gamma dramatically inhibited FDC-CD23 in mice immunized with CFA, whereas anti-IL-4 had only a modest inhibitory effect. In contrast with FDCs, IFN-gamma inhibited surface expression of murine B cell-CD23 as well as mRNA for B cell CD23a and -CD23b, whereas IL-4 dramatically enhanced message for both isoforms as well as protein expression. In short, CD23 was regulated very differently in FDCs and B cells. Previous studies suggest that high levels of FDC-CD23 inhibit IgE production, and this IFN-gamma and CD40L-mediated up-regulation of FDC-CD23 may explain, at least in part, why Th1 responses are associated with low IgE responses in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号