首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1757篇
  免费   80篇
  2021年   11篇
  2020年   16篇
  2019年   11篇
  2018年   23篇
  2017年   13篇
  2016年   27篇
  2015年   41篇
  2014年   45篇
  2013年   103篇
  2012年   82篇
  2011年   71篇
  2010年   40篇
  2009年   52篇
  2008年   85篇
  2007年   82篇
  2006年   83篇
  2005年   77篇
  2004年   67篇
  2003年   61篇
  2002年   66篇
  2001年   47篇
  2000年   59篇
  1999年   55篇
  1998年   23篇
  1997年   11篇
  1996年   13篇
  1995年   17篇
  1994年   19篇
  1993年   12篇
  1992年   60篇
  1991年   40篇
  1990年   24篇
  1989年   33篇
  1988年   45篇
  1987年   40篇
  1986年   23篇
  1985年   25篇
  1984年   20篇
  1983年   24篇
  1981年   13篇
  1980年   9篇
  1979年   24篇
  1976年   11篇
  1975年   10篇
  1974年   13篇
  1973年   11篇
  1972年   12篇
  1971年   10篇
  1970年   13篇
  1968年   13篇
排序方式: 共有1837条查询结果,搜索用时 15 毫秒
271.
Chitosanase from Bacillus circulans MH-K1 is a 29-kDa extracellular protein composed of 259 amino acids. The crystal structure of chitosanase from B. circulans MH-K1 has been determined by multiwavelength anomalous diffraction method and refined to crystallographic R = 19.2% (R(free) = 23.5%) for the diffraction data at 1.6-A resolution collected by synchrotron radiation. The enzyme has two globular upper and lower domains, which generate the active site cleft for the substrate binding. The overall molecular folding is similar to chitosanase from Streptomyces sp. N174, although there is only 20% identity at the amino acid sequence level between both chitosanases. However, there are three regions in which the topology is remarkably different. In addition, the disulfide bridge between Cys(50) and Cys(124) joins the beta1 strand and the alpha7 helix, which is not conserved among other chitosanases. The orientation of two backbone helices, which connect the two domains, is also different and is responsible for the differences in size and shape of the active site cleft in these two chitosanases. This structural difference in the active site cleft is the reason why the enzymes specifically recognize different substrates and catalyze different types of chitosan degradation.  相似文献   
272.
In the presence of a nonlethal concentration of Cu(II), washed Escherichia coli ATCC11775 cells were killed by (-)-epigallocatechin (EGC) and (-)-epicatechin (EC). Cell killing was accompanied by a depletion in both the ATP and potassium pools of the cells, but the DNA double strand was not broken, indicating that the bactericidal activity of catechins in the presence of Cu(II) results from damage to the cytoplasmic membrane. Induction of endogenous catalase in E. coli cells increased their resistance to being killed by the combination of catechins and Cu(II). In all cases studied, EGC and EC with Cu(II) were found to generate hydrogen peroxide, but its concentration was too low to account for the bactericidal activity. The bactericidal activity of EGC in the presence of Cu(II) was completely suppressed by ethylenediaminetetraacetate, bathocuproine, catalase, superoxide disumutase (SOD), heated catalase, and heated SOD, but not by dimethyl sulfoxide. When catalase, either heated or unheated, was added to the cells incubated with EGC in the presence of Cu(II), it completely inhibited further killing of the cells. These findings suggest that recycling redox reactions between Cu(II) and Cu(I), involving catechins and hydrogen peroxide on the cell surface, must be important in the mechanism of the killing.  相似文献   
273.
Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta‐like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast‐specific manner, we investigated the ligand‐specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1‐induced Notch signaling was responsible for the expansion of the bone‐forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1‐Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast‐specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast‐osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1‐mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand‐specific activation of Notch signaling in the maintenance of bone homeostasis. J. Cell. Physiol. 232: 2569–2580, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.  相似文献   
274.

Background

We examined how purging behaviors relate to subjective sleep quality and sleep patterns and how symptoms of disordered eating behaviors relate to global sleep quality in female patients with anorexia nervosa (AN).

Methods

Participants were new consecutive female inpatients with a primary diagnosis of AN admitted to the Department of Psychosomatic Medicine at Kohnodai Hospital between June 26 and December 25, 2015. We recorded patients’ habitual eating behaviors, laxative overuse, or uretic misuse, and administered the Japanese versions of the Pittsburgh Sleep Quality Index (PSQI-J) and Center for Epidemiologic Studies Depression Scale. Raw PSQI-J data were used to determine sleep patterns (sleep-onset time, wake-up time, and sleep duration). To examine how purging behaviors related to sleep quality, we compared variables between AN restricting type (ANr) and AN binge-eating/purging type (ANbp). Spearman’s rank correlation analysis was used to examine which potential factors influence global PSQI-J score.

Results

Participants were 20 patients, of whom 12 had ANbp. Two ANr patients (25%) had global PSQI-J scores greater than 5, compared to 9 ANbp patients (75%; P < 0.05). Circadian rhythm disruption and abnormal sleep duration were significantly greater in ANbp patients than in ANr patients (P < 0.05). Global PSQI-J was significantly correlated with a diagnosis of ANbp (ρ = 0.525; P < 0.05), vomiting (ρ = 0.561; P < 0.05), and duration of illness (ρ = 0.536; P < 0.05).

Conclusions

ANbp patients had worse global sleep quality and greater disrupted sleep than did ANr patients. This suggests that treatments focusing on sleep would be useful, especially for ANbp patients. Furthermore, vomiting and duration of illness should be considered essential factors related to impaired global sleep quality.

Trial registration

Not applicable.
  相似文献   
275.

Background

Administration of valproic acid (VPA) is complicated with approximately 0.9% of patients developing hyperammonemia, but the pathogenesis of this adverse effect remains to be clarified. The aim of the present study was to search for mechanisms associated with VPA-induced hyperammonemia in the light of changes in serum amino acids concentrations associated with the urea cycle of schizophrenic patients.

Method

Blood samples (10 mL) were obtained from 37 schizophrenic patients receiving VPA for the prevention of violent behaviors in the morning after overnight fast. Blood concentrations of ammonia, VPA, free carnitine, acyl-carnitine, and 40 amino acids including glutamate and citrulline were measured for each patient. Univariate and multivariate regression analyses were performed to identify amino acids or concomitantly administered drugs that were associated with variability in the blood concentrations of ammonia.

Result

The blood ammonia level was positively correlated with the serum glutamate concentration (r = 0.44, p < 0.01) but negatively correlated with glutamine (r = ?0.41, p = 0.01), citrulline (r = ?0.42, p = 0.01), and glycine concentrations (r = ?0.54, p < 0.01). It was also revealed that the concomitant administration of the mood stabilizers (p = 0.04) risperidone (p = 0.03) and blonanserin (p < 0.01) was positively associated with the elevation of the blood ammonia level.

Conclusion

We hypothisized that VPA would elevate the blood ammonia level of schizophrenic patients. The observed changes in serum amino acids are compatible with urea cycle dysfunction, possibly due to reduced carbamoyl-phosphate synthase 1 (CPS1) activity. We conclude that VPA should be prudently prescribed to schizophrenic patients, particularly those receiving mood stabilizers or certain antipsychotics.
  相似文献   
276.
mDia proteins are mammalian homologues of Drosophila diaphanous and belong to the formin family proteins that catalyze actin nucleation and polymerization. Although formin family proteins of nonmammalian species such as Drosophila diaphanous are essential in cytokinesis, whether and how mDia proteins function in cytokinesis remain unknown. Here we depleted each of the three mDia isoforms in NIH 3T3 cells by RNA interference and examined this issue. Depletion of mDia2 selectively increased the number of binucleate cells, which was corrected by coexpression of RNAi-resistant full-length mDia2. mDia2 accumulates in the cleavage furrow during anaphase to telophase, and concentrates in the midbody at the end of cytokinesis. Depletion of mDia2 induced contraction at aberrant sites of dividing cells, where contractile ring components such as RhoA, myosin, anillin, and phosphorylated ERM accumulated. Treatment with blebbistatin suppressed abnormal contraction, corrected localization of the above components, and revealed that the amount of F-actin at the equatorial region during anaphase/telophase was significantly decreased with mDia2 RNAi. These results demonstrate that mDia2 is essential in mammalian cell cytokinesis and that mDia2-induced F-actin forms a scaffold for the contractile ring and maintains its position in the middle of a dividing cell.  相似文献   
277.
Urea transport in the kidney is important for the production of concentrated urine. This process is mediated by urea transporters (UTs) encoded by two genes, UT-A (Slc14a2) and UT-B (Slc14a1). Our previous study demonstrated that cetaceans produce highly concentrated urine than terrestrial mammals, and that baleen whales showed higher concentrations of urinary urea than sperm whales. Therefore, we hypothesized that cetaceans have unique actions of UTs to maintain fluid homeostasis in marine habitat. Kidney samples of common minke (Balaenoptera acutorostrata), sei (B. borealis), Bryde's (B. brydei) and sperm whales (Physeter macrocephalus) were obtained to determine the nucleotide sequences of mRNAs encoding UT. The sequences of 2.5-kb cDNAs encode 397-amino acid proteins, which are 90-94% identical to the mammalian UT-A2s. Two putative glycosylation sites are conserved between the whales and the terrestrial mammals, whereas consensus sites for protein kinases are not completely conserved; only a single protein kinase A consensus site was identified in the whale UT-A2s. Two protein kinase C consensus sites are present in the baleen whale UT-A2s, however, a single protein kinase C consensus site was identified in the sperm whale UT-A2. These different phosphorylation sites of whale UT-A2s may result in the high concentrations of urinary urea in whales, by reflecting their urea permeability.  相似文献   
278.
Smurf1, a member of HECT-type E3 ubiquitin ligases, regulates cell polarity and protrusive activity by inducing ubiquitination and subsequent proteasomal degradation of the small GTPase RhoA. We report here that hPEM-2, a guanine nucleotide exchange factor for the small GTPase Cdc42, is a novel target of Smurf1. Pulse-chase labeling and a ubiquitination experiment using MG132, a proteasomal inhibitor, indicate that Smurf1 induces proteasomal degradation of hPEM-2 in cells. GST pull-down assays with heterologously expressed firefly luciferase-fusion proteins that include partial sequences of hPEM-2 reveal that part of the PH domain (residues 318-343) of hPEM-2 is sufficient for binding to Smurf1. In contrast, the hPEM-2 binding domain in Smurf1 was mapped to the C2 domain. Although it has been reported that the binding activities of some C2 domains to target proteins are regulated by Ca2+, Smurf1 interacts with hPEM-2 in a Ca2+-independent manner. Our discovery that hPEM-2 is, in addition to RhoA, a target protein of Smurf1 suggests that Smurf1 plays a crucial role in the spatiotemporal regulation of Rho GTPase family members.  相似文献   
279.
We investigated in vitro inhibition of mammalian carbohydrate-degrading enzymes by six-membered sugar mimics and their evaluation in cell cultures. 1-Deoxynojirimycin (DNJ) showed no significant inhibition toward glycogen phosphorylase (GP) but was a potent inhibitor of another glycogen-degrading enzyme, amylo-1,6-glucosidase (1,6-GL), with an IC(50) value of 0.16 microM. In primary rat hepatocytes, the inhibition of glycogen breakdown by DNJ reached plateau at 100 microM with 25% inhibition and then remained unchanged. The potent GP inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1) inhibited hepatic glucose production with an IC(50) value of about 9 microM and the inhibition by D-AB1 was further enhanced in the presence of DNJ. DNJ and alpha-homonojirimycin (HNJ) are very potent inhibitors of rat intestinal maltase, with IC(50) values of 0.13 and 0.08 microM, respectively, and also showed a similar strong inhibition toward maltase in Caco-2 cell model system, with IC(50) value of 0.05 and 0.10 microM, respectively. D-Isofagomine (D-IFG) and L-IFG are competitive and noncompetitive inhibitors of human lysosomal beta-glucosidase (beta-GL), respectively, with K(i) values of 8.4 nM and 6.9 microM. D-IFG increased intracellular beta-GL activity by twofold at 10 microM in Gaucher N370S cell line as an 'active-site-specific' chaperone, and surprisingly a noncompetitive inhibitor L-IFG also increased intracellular beta-GL activity by 1.6-fold at 500 microM.  相似文献   
280.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号