首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3315篇
  免费   338篇
  3653篇
  2022年   20篇
  2021年   36篇
  2020年   29篇
  2019年   47篇
  2018年   52篇
  2017年   48篇
  2016年   75篇
  2015年   109篇
  2014年   124篇
  2013年   167篇
  2012年   201篇
  2011年   200篇
  2010年   141篇
  2009年   123篇
  2008年   142篇
  2007年   138篇
  2006年   145篇
  2005年   141篇
  2004年   121篇
  2003年   139篇
  2002年   131篇
  2001年   104篇
  2000年   101篇
  1999年   86篇
  1998年   44篇
  1997年   37篇
  1996年   40篇
  1995年   39篇
  1994年   37篇
  1993年   38篇
  1992年   76篇
  1991年   48篇
  1990年   43篇
  1989年   54篇
  1988年   29篇
  1987年   41篇
  1986年   48篇
  1985年   36篇
  1984年   33篇
  1983年   36篇
  1982年   23篇
  1981年   31篇
  1980年   19篇
  1979年   24篇
  1978年   28篇
  1977年   21篇
  1975年   22篇
  1974年   19篇
  1973年   18篇
  1972年   16篇
排序方式: 共有3653条查询结果,搜索用时 15 毫秒
81.

Background

After the worldwide steep increase in child and adolescent overweight and obesity during the last decades, there is now evidence of a levelling off in the prevalence in many countries in the Western world.

Aim

To examine whether there still is a plateau in the prevalence of overweight and obesity in Danish children and adolescents, or whether the prevalence is decreasing or rising again.

Methods

The trends in the prevalence rates were based on three data sets providing comparable repeated estimates: 1) the Danish Health Visitors Child Health Database (DHVCHD) with measurements on infant and childhood height and weight from 2002 to 2011 (n up to 39,984), 2) the Danish National Birth Cohort (DNBC) with maternal reports of measured infant and childhood height and weight from 1998 to 2010 (n up to 56,826) and 3) the Danish part of the Health Behaviour in School-aged Children survey (HBSC) with self-reported information on adolescent height and weight from the years 2002 to 2010 (n = 16,557). Overweight and obesity were categorized according to WHO growth standards. Trends were assessed by repeated point estimates and linear regression analyses providing regression coefficients for changes in per cent per year with 95% confidence intervals (CI).

Results

The prevalence rates of overweight and obesity for infants, children and adolescents showed a mixed pattern of decline, stability and increase (ranging from -1.10 through 0.29 per cent per year with CI’s from -3.10 through 2.37). Overall, there were no consistent statistically significant trends upwards or downwards, although some significant downward trends in childhood and adolescence were observed.

Conclusion

This study, based on data from 1998 through 2011, showed that the prevalence rates of overweight and obesity among Danish infants, children and adolescents were largely still on a plateau with tendencies for a decline among children and adolescents.  相似文献   
82.
83.
As a dispersive lineage expands its distribution across a heterogeneous landscape, it leaves behind allopatric populations with varying degrees of geographic isolation that often differentiate rapidly. In the case of oceanic islands, even narrowly separated populations often differentiate, which seems contrary to the highly dispersive nature of the founding lineage. This pattern of highly dispersive lineages differentiating across narrow sea barriers has perplexed biologists for more than a century. We used two reduced-representation genomic datasets to examine the diversification of a recent, rapid geographic radiation, the white-eyes (Aves: Zosterops) of the Solomon Islands. We incorporated methods that targeted phylogenetic structure, population structure, and explicit tests for gene flow. Both datasets showed evidence of gene flow among species, but not involving the closely spaced islands in the New Georgia Group. Instead, gene flow has occurred among the larger islands in the archipelago, including those recently connected by land bridges as well as those isolated by large expanses of deep ocean. Populations separated by shallow seas, and connected by land bridges during glacial cycles, ranged from no differentiation to both phenotypic and genomic differentiation. These complex patterns of gene flow and divergence support a model of rapid geographic radiation in which lineages differentially evolve dispersal disparity and phenotypic differences.  相似文献   
84.

Background

DNA barcoding offers an efficient way to determine species identification and to measure biodiversity. For dinoflagellates, an ancient alveolate group of about 2000 described extant species, DNA barcoding studies have revealed large amounts of unrecognized species diversity, most of which is not represented in culture collections. To date, two mitochondrial gene markers, Cytochrome Oxidase I (COI) and Cytochrome b oxidase (COB), have been used to assess DNA barcoding in dinoflagellates, and both failed to amplify all taxa and suffered from low resolution. Nevertheless, both genes yielded many examples of morphospecies showing cryptic speciation and morphologically distinct named species being genetically similar, highlighting the need for a common marker. For example, a large number of cultured Symbiodinium strains have neither taxonomic identification, nor a common measure of diversity that can be used to compare this genus to other dinoflagellates.

Methodology/Principal Findings

The purpose of this study was to evaluate the Internal Transcribed Spacer units 1 and 2 (ITS) of the rDNA operon, as a high resolution marker for distinguishing species dinoflagellates in culture. In our study, from 78 different species, the ITS barcode clearly differentiated species from genera and could identify 96% of strains to a known species or sub-genus grouping. 8.3% showed evidence of being cryptic species. A quarter of strains identified had no previous species identification. The greatest levels of hidden biodiversity came from Scrippsiella and the Pfiesteriaceae family, whilst Heterocapsa strains showed a high level of mismatch to their given species name.

Conclusions/Significance

The ITS marker was successful in confirming species, revealing hidden diversity in culture collections. This marker, however, may have limited use for environmental barcoding due to paralogues, the potential for unidentifiable chimaeras and priming across taxa. In these cases ITS would serve well in combination with other markers or for specific taxon studies.  相似文献   
85.
The wide distribution and dominance of invasive inbreeding species in many forest ecosystems seems paradoxical in face of their limited genetic variation. Successful establishment of invasive species in new areas is nevertheless facilitated by clonal reproduction: parthenogenesis, regular self-fertilization, and regular inbreeding. The success of clonal lineages in variable environments has been explained by two models, the frozen niche variation (FNV) model and the general-purpose genotype (GPG) model. We tested these models on a widely distributed forest pest that has been recently established in Costa Rica-the sibling-mating ambrosia beetle Xylosandrus morigerus. Two deeply diverged mitochondrial haplotypes coexist at multiple sites in Costa Rica. We find that these two haplotypes do not differ in their associations with ecological factors. Overall the two haplotypes showed complete overlap in their resource utilization; both genotypes have broad niches, supporting the GPG model. Thus, probable or not, our findings suggest that X. morigerus is a true ecological generalist. Clonal aspects of reproduction coupled with broad niches are doubtless important factors in the successful colonization of new habitats in distant regions.  相似文献   
86.

Background

Lifetime victimization experiences, including child sexual abuse (CSA), child physical abuse (CPA), adult sexual assault (ASA), and adult physical assault (APA), are associated with health problems.

Purpose

To examine relationships between cumulative victimization and physical health among heterosexual and lesbian women and determine whether these relationships differ by sexual identity.

Methods

Large samples of heterosexual (n = 482) and lesbian women (n = 394) were interviewed. Questions included lifetime victimization experiences and physical health problems.

Results

Compared to women who reported no childhood victimization, those who reported experiencing both CSA and CPA were 44% more likely to report health problems and women who experienced all four types of victimization (CSA, CPA, APA, ASA) were nearly 240% as likely to report physical health problems. Interaction analyses revealed the association between victimization and physical health did not differ by sexual identity.

Conclusions

Although lesbians were more likely to report all types of victimization, results suggest that victimization conferred increased physical health risks regardless of sexual identity.  相似文献   
87.
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.  相似文献   
88.
Summary Nest humidity ( ) under an incubating bantam hen was measured at ambient ranging from 1.3 to 25.0 mmHg. Weight loss of eggs was recorded in clutches of varying size. Nest and ambient were also measured in wild incubating willow ptarmigan nests in dry and wet habitats.Nest increased linearly with ambient in a way predictable on the assumption that the water vapour conductance ( ) of brood patch skin, plumage and eggs were constant and independent of ambient . Nest was also dependent of clutch size. Egg dehydration was quantitatively predicted from measured values and the laws of diffusion.Our findings confirm earlier conclusions that the adult bird does not actively regulate nest at varying ambient . Birds can presumably achieve appropriate egg dehydration by a strategy combining nest site, nest construction, egg shell conductance and incubation behaviour which meets the requirements of their breeding climate.Abbreviations water vapur pressure - water vapur conductance - water flux  相似文献   
89.
H5N1 highly pathogenic avian influenza virus (HPAIV) causes periodic outbreaks in humans, resulting in severe infections with a high (60%) incidence of mortality. The circulating strains have low human-to-human transmissibility; however, widespread concerns exist that enhanced transmission due to mutations could lead to a global pandemic. We previously engineered Newcastle disease virus (NDV), an avian paramyxovirus, as a vector to express the HPAIV hemagglutinin (HA) protein, and we showed that this vaccine (NDV/HA) induced a high level of HPAIV-specific mucosal and serum antibodies in primates when administered through the respiratory tract. Here we developed additional NDV-vectored vaccines expressing either HPAIV HA in which the polybasic cleavage site was replaced with that from a low-pathogenicity strain of influenza virus [HA(RV)], in order to address concerns of enhanced vector replication or genetic exchange, or HPAIV neuraminidase (NA). The three vaccine viruses [NDV/HA, NDV/HA(RV), and NDV/NA] were administered separately to groups of African green monkeys by the intranasal/intratracheal route. An additional group of animals received NDV/HA by aerosol administration. Each of the vaccine constructs was highly restricted for replication, with only low levels of virus shedding detected in respiratory secretions. All groups developed high levels of neutralizing antibodies against homologous and heterologous strains of HPAIV and were protected against challenge with 2 × 107 PFU of homologous HPAIV. Thus, needle-free, highly attenuated NDV-vectored vaccines expressing either HPAIV HA, HA(RV), or NA have been developed and demonstrated to be individually immunogenic and protective in a primate model of HPAIV infection. The finding that HA(RV) was protective indicates that it would be preferred for inclusion in a vaccine. The study also identified NA as an independent protective HPAIV antigen in primates. Furthermore, we demonstrated the feasibility of aerosol delivery of NDV-vectored vaccines.H5N1 highly pathogenic avian influenza virus (HPAIV) was first detected in human infections in 1997; previously, it had been found only in birds (11, 50). To date, this virus has been identified in 436 confirmed cases of human infection in 15 countries, 262 (60%) of which were fatal (75). The currently circulating H5N1 strains are characterized by low human-to-human transmissibility. This has been attributed, in part, to a preference for binding to α-2,3-linked sialic acids that are present in high concentrations throughout the avian respiratory tract but were thought to be found primarily in the lower human respiratory tract (57), although this explanation has been questioned (48, 49). It has also been observed that mutations in the PB2 subunit of the viral polymerase are necessary to confer the ability for the virus to be spread by aerosolized nasal droplets in ferrets (72). Whatever factors may be involved, there is widespread concern that the avian virus could mutate to enhance its transmissibility among humans, possibly resulting in a global pandemic (28, 50). For the avian H9N2 virus, which also has pandemic potential, it has been demonstrated that only five amino acid changes were sufficient for the virus to gain the ability to be spread by aerosolized nasal droplets in a ferret model (60). Thus, there is an urgent need for vaccines against HPAIV.Several vaccine strategies for HPAIV have been evaluated (reviewed in references 32 and 41), including inactivated and live attenuated vaccines. These efforts have been hampered by several factors. HPAIV strains are highly virulent for embryonated chicken eggs, the most widely used substrate for vaccine manufacture, and their rapid death following inoculation renders eggs unsuitable for efficient virus propagation. In addition, the major protective antigen, hemagglutinin (HA), administered either as a purified protein or in inactivated HPAIV virions, appears to be poorly immunogenic (69, 70). An additional factor complicating the development of HPAIV vaccines based on inactivated virus is the high cost and biohazard associated with HPAIV propagation, which must be done under enhanced biosafety level 3 (BSL-3) containment, although this problem might be addressed by the use of live attenuated reassortant influenza virus vaccines that contain the HPAIV glycoproteins on the background of an avirulent human influenza virus strain (24, 37). In addition, such reassortant strains might serve directly as live attenuated vaccines. Unfortunately, the latter approach may be limited by subtle and unpredictable incompatibility between the avian-origin glycoproteins and human-origin vaccine backgrounds acceptable for human use, which can result in overattenuation in vivo (24). There are also lingering concerns about the significant potential, with a live HPAIV vaccine, for reassortment between gene segments of the vaccine virus and circulating influenza virus strains, which might result in novel strains with unpredictable biological properties (63).We and others have been evaluating Newcastle disease virus (NDV) as a general human vaccine vector for emerging pathogens, including H5N1 HPAIV (7, 18-20, 29). NDV is an avian paramyxovirus that is antigenically unrelated to common human pathogens; hence, its use in humans should not be affected by host immunity to common pathogens. The many naturally occurring strains of NDV can be categorized into three pathotypes based on virulence in chickens: velogenic strains, causing severe disease with high mortality; mesogenic strains, causing disease of intermediate severity with low mortality; and lentogenic strains, causing mild or inapparent infections (reviewed in reference 2). Lentogenic, and sometimes mesogenic, strains of NDV are in wide use as live attenuated vaccines against velogenic NDV in poultry (2). When mesogenic or lentogenic NDV was administered to the respiratory tracts of nonhuman primates as a model for the immunization of humans, the virus was highly attenuated for replication, was shed only at low titers, appeared to remain restricted to the respiratory tract, and was highly immunogenic for the expressed foreign antigen (7). We recently demonstrated that a mesogenic strain of NDV expressing the HA protein of H5N1 HPAIV (NDV/HA) elicited high titers of neutralizing antibodies in serum following combined intranasal (i.n.) and intratracheal (i.t.) delivery in a nonhuman primate model (20). Vaccination of mice with a similar NDV-vectored vaccine protected them from HPAIV challenge (29). However, results obtained with mice do not reliably predict the efficacy of an influenza virus vaccine for human use, due to the pathophysiological and phylogenetic differences between mice and humans (71). In particular, mice may produce a potent immune response to HPAIV vaccines (64) that may not be reproduced in clinical trials (38). These considerations are especially important for a vaccine based on a live viral vector platform, since its immunogenicity, and therefore its protective efficacy, is directly linked to replication, which can differ greatly in various experimental animals versus humans (reviewed in references 6 and 9). Therefore, the protective efficacy of NDV-based vaccines against HPAIV challenge in nonhuman primate models—the closest model to humans—has remained unknown.The protease recognition sequence of the HA protein is one of the major determinants of avian influenza virus pathogenicity (62). HPAIV strains have a “polybasic” cleavage site, containing multiple basic amino acids, that is readily cleaved by ubiquitous intracellular subtilisin-like proteases, facilitating the replication and spread of the virus. In contrast, the HA cleavage site of low-pathogenicity strains contains fewer basic amino acids and depends on secretory trypsin-like proteases found in the respiratory and enteric tracts, resulting in more-localized infections (30, 62). The presence of a polybasic cleavage site in the H5 HA of any live vaccine raises some concern about the possibility of genetic exchange with circulating strains of influenza virus. It should be noted that genetic exchange involving paramyxoviruses is a rare event (14) that has been documented only once (61). However, elimination of the polybasic HA cleavage site would mitigate the effects of even this rare possibility of genetic exchange. Another concern was based on our previous finding that the HPAIV H5 HA protein is incorporated into the NDV envelope as a trimer (20), consistent with its presence in a functional form. While we previously showed that this did not enhance the pathogenicity of the NDV/HA recombinant in chickens (20), we could not rule out the possibility that it might confer an altered tropism on the NDV/HA virus in other systems. For example, a recombinant parainfluenza virus type 3 expressing the Ebola virus glycoprotein incorporated the foreign protein into its envelope, allowing cellular attachment and fusion of the vaccine virus independently of the vector''s own envelope glycoproteins (10).In addition to the HA protein, the neuraminidase (NA) protein is also present on the surfaces of influenza virus-infected cells and virions. Antibodies specific for NA are not thought to interfere with the initial viral attachment and penetration of host cells (36, 40, 54). However, NA-specific antibodies prevent the release of virus from infected cells, thereby decreasing viral spread (35), and they increase resistance to viral infection in humans (40, 47, 54). They also provide at least some protection against viruses bearing homologous or heterologous NA proteins of the same subtype in a mouse model (12, 56). NA also appears to evolve at a lower rate than HA, suggesting that NA-specific antibodies may provide broader protection than a vaccine utilizing HA alone (39). Therefore, it was important to assess the immunogenicity and protective efficacy of the HPAIV NA independently of those of HA, which has not previously been done in a human or nonhuman primate model.  相似文献   
90.
Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C‐terminal hydrolase UCH‐L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH‐L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH‐L1‐negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH‐L1 controls the early membrane‐associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c‐cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2‐ and AKT‐dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH‐L1C90S. These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH‐L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria‐based drug delivery systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号