首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3398篇
  免费   343篇
  国内免费   1篇
  3742篇
  2022年   19篇
  2021年   36篇
  2020年   28篇
  2019年   47篇
  2018年   53篇
  2017年   48篇
  2016年   75篇
  2015年   109篇
  2014年   125篇
  2013年   170篇
  2012年   201篇
  2011年   197篇
  2010年   143篇
  2009年   126篇
  2008年   147篇
  2007年   140篇
  2006年   148篇
  2005年   144篇
  2004年   123篇
  2003年   141篇
  2002年   132篇
  2001年   109篇
  2000年   104篇
  1999年   93篇
  1998年   50篇
  1997年   41篇
  1996年   40篇
  1995年   41篇
  1994年   37篇
  1993年   39篇
  1992年   77篇
  1991年   48篇
  1990年   45篇
  1989年   55篇
  1988年   31篇
  1987年   43篇
  1986年   51篇
  1985年   37篇
  1984年   33篇
  1983年   37篇
  1982年   26篇
  1981年   35篇
  1980年   19篇
  1979年   24篇
  1978年   28篇
  1977年   23篇
  1975年   24篇
  1974年   20篇
  1973年   18篇
  1972年   17篇
排序方式: 共有3742条查询结果,搜索用时 0 毫秒
81.
82.
The complement system is an essential element of the innate immune response that becomes activated upon recognition of molecular patterns associated with microorganisms, abnormal host cells, and modified molecules in the extracellular environment. The resulting proteolytic cascade tags the complement activator for elimination and elicits a pro‐inflammatory response leading to recruitment and activation of immune cells from both the innate and adaptive branches of the immune system. Through these activities, complement functions in the first line of defense against pathogens but also contributes significantly to the maintenance of homeostasis and prevention of autoimmunity. Activation of complement and the subsequent biological responses occur primarily in the extracellular environment. However, recent studies have demonstrated autocrine signaling by complement activation in intracellular vesicles, while the presence of a cytoplasmic receptor serves to detect complement‐opsonized intracellular pathogens. Furthermore, breakthroughs in both functional and structural studies now make it possible to describe many of the intricate molecular mechanisms underlying complement activation and the subsequent downstream events, as well as its cross talk with, for example, signaling pathways, the coagulation system, and adaptive immunity. We present an integrated and updated view of complement based on structural and functional data and describe the new roles attributed to complement. Finally, we discuss how the structural and mechanistic understanding of the complement system rationalizes the genetic defects conferring uncontrolled activation or other undesirable effects of complement.  相似文献   
83.
84.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   
85.
86.
87.
88.
89.
90.
Elongation factors in protein biosynthesis   总被引:10,自引:0,他引:10  
Translation elongation factors are the workhorses of protein synthesis on the ribosome. They assist in elongating the nascent polypeptide chain by one amino acid at a time. The general biochemical outline of the translation elongation cycle is well preserved in all biological kingdoms. Recently, there has been structural insight into the effects of antibiotics on elongation. These structures provide a scaffold for understanding the biological function of elongation factors before high-resolution structures of such factors in complex with ribosomes are obtained. Very recent structures of the yeast translocation factor and its complex with the antifungal drug sordarin reveal an unexpected conformational flexibility that might be crucial to the mechanism of translocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号