首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3697篇
  免费   379篇
  2022年   18篇
  2021年   35篇
  2020年   28篇
  2019年   48篇
  2018年   57篇
  2017年   50篇
  2016年   86篇
  2015年   122篇
  2014年   144篇
  2013年   185篇
  2012年   233篇
  2011年   224篇
  2010年   158篇
  2009年   136篇
  2008年   166篇
  2007年   166篇
  2006年   175篇
  2005年   164篇
  2004年   151篇
  2003年   170篇
  2002年   159篇
  2001年   108篇
  2000年   105篇
  1999年   89篇
  1998年   46篇
  1997年   41篇
  1996年   47篇
  1995年   43篇
  1994年   41篇
  1993年   46篇
  1992年   81篇
  1991年   56篇
  1990年   43篇
  1989年   59篇
  1988年   32篇
  1987年   45篇
  1986年   49篇
  1985年   38篇
  1984年   36篇
  1983年   36篇
  1982年   24篇
  1981年   33篇
  1980年   20篇
  1979年   24篇
  1978年   28篇
  1977年   22篇
  1975年   23篇
  1974年   19篇
  1973年   20篇
  1972年   16篇
排序方式: 共有4076条查询结果,搜索用时 31 毫秒
221.
To examine the structural and functional importance of backbone amide groups in ion channels for subunit folding, hydrogen bonding, ion solvation, and ion permeation, we replaced the peptide bond between Val(1) and Gly(2) in gramicidin A by an ester bond. The substitution is at the junction between the two channel subunits, where it removes an intramolecular hydrogen bond between the NH of Gly(2) and the C==O of Val(7) and perturbs an intermolecular hydrogen bond between the C==O of Val(1) in one subunit and the NH of Ala(5) in the other subunit. The substitution thus perturbs not only subunit folding but also dimer assembly, in addition to any effects on ion permeation. This backbone modification has large effects on channel function: It alters channel stability, as monitored by the channel forming ability and channel lifetime, and ion permeability, as monitored by changes in single-channel conductance and cation permeability ratios. In fact, the homodimeric channels, with two ester-containing subunits, have lifetimes so short that it becomes impossible to characterize them in any detail. The peptide --> ester substitution, however, does not affect the basic subunit fold because heterodimeric channels can form between a subunit with an ester bond and a native subunit. These heterodimeric channels, with only a single ester bond, are more easily characterized; the lone ester reduces the single-channel conductance about 4-fold and the lifetime about 200-fold as compared to the native homodimeric channels. The altered channel function results from a perturbation/disruption of the hydrogen bond network that stabilizes the backbone, as well as the membrane-spanning dimer, and that forms the lining of the ion-conducting pore. Molecular dynamics simulations show the expected destabilization of the modified heterodimeric or homodimeric channels, but the changes in backbone structure and dynamics are remarkably small. The ester bond is somewhat unstable, which precluded further structural characterization. The lability also led to a hydrolysis product that terminates with an alcohol and lacks formyl-Val. Symmetric channels formed by the hydrolyzed product again have short lifetimes, but the channels are distinctly different from those formed by the ester gramicidin A. Furthermore, well-behaved asymmetric channels form between the hydrolysis product and reference subunits that have either an L- or a D-residue at the formyl-NH-terminus.  相似文献   
222.
During mating of Saccharomyces cerevisiae, two nuclei fuse to produce a single diploid nucleus. Two genes, KAR7 and KAR8, were previously identified by mutations that cause defects in nuclear membrane fusion. KAR7 is allelic to SEC71, a gene involved in protein translocation into the endoplasmic reticulum. Two other translocation mutants, sec63-1 and sec72Delta, also exhibited moderate karyogamy defects. Membranes from kar7/sec71Delta and sec72Delta, but not sec63-1, exhibited reduced membrane fusion in vitro, but only at elevated temperatures. Genetic interactions between kar7 and kar5 mutations were suggestive of protein-protein interactions. Moreover, in sec71 mutants, Kar5p was absent from the SPB and was not detected by Western blot or immunoprecipitation of pulse-labeled protein. KAR8 is allelic to JEMI, encoding an endoplasmic reticulum resident DnaJ protein required for nuclear fusion. Overexpression of KAR8/JEM1 (but not SEC63) strongly suppressed the mating defect of kar2-1, suggesting that Kar2p interacts with Kar8/Jem1p for nuclear fusion. Electron microscopy analysis of kar8 mutant zygotes revealed a nuclear fusion defect different from kar2, kar5, and kar7/sec71 mutants. Analysis of double mutants suggested that Kar5p acts before Kar8/Jem1p. We propose the existence of a nuclear envelope fusion chaperone complex in which Kar2p, Kar5p, and Kar8/Jem1p are key components and Sec71p and Sec72p play auxiliary roles.  相似文献   
223.
Decay of the hypervalent muscle pigment ferrylmyoglobin, formed by activation of metmyoglobin by hydrogen peroxide, was found, when studied by a combination of ESR and UV/VIS spectroscopy in aqueous solution at physiological pH, to proceed by parallel second- and first-order kinetics. At pH below 6.5 a sharp ESR signal (g = 2.003) with an increasing intensity for decreasing pH were observed in solutions frozen in liquid nitrogen, and a broad signal (g = 2.005) was seen throughout the studied pH range also in frozen solutions. The g = 2.005 signal is suggested to arise from an intermediate formed in an intramolecular rate-determining electron-transfer in ferrylmyoglobin, whereas the g = 2.003 signal is caused by a radical formed in a proton-assisted electron-transfer initiating the specific acid-catalysed autoreduction.  相似文献   
224.
225.
The present study tests the hypothesis that pretreatment with allopurinol, a xanthine oxidase inhibitor, will prevent modification of the NMDA receptor during cerebral hypoxia in newborn piglets. Eighteen newborn piglets were studied. Six normoxic control animals were compared to six untreated hypoxic and six allopurinol (20 mg/kg i.v.) pretreated hypoxic piglets. Cerebral hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 hour and tissue hypoxia was confirmed biochemically by the measurement of ATP and phosphocreatine. Brain cell membrane Na+,K+-ATPase activity was determined to assess membrane function. Na+,K+-ATPase activity was decreased from control in both the untreated and treated hypoxic animals (46.0 ± 1.0 vs 37.9 ± 2.5 and 37.3 ± 1.4 mol Pi/mg protein/hr, respectively, p < 0.05). [3H]MK-801 binding was determined as an index of NMDA receptor modification. The receptor density (Bmax) in the untreated hypoxic group was decreased compared to normoxic control (1.09 ± 0.17 vs 0.68 ± 0.22 pmol/mg protein, p < 0.01). The dissociation constant (Kd) was also decreased in the untreated group (10.0 ± 2.0 vs 4.9 ± 1.4 nM, p < 0.01), indicating an increase in receptor affinity. However, in the allopurinol treated hypoxic group, the Bmax (1.27 ± 0.09 pmol/mg protein) was similar to normoxic control and the Kd (8.1 ± 1.2 nM, p < 0.05) was significantly higher than in the untreated hypoxic group. The data show that the administration of allopurinol prior to hypoxia prevents hypoxia-induced modification of the NMDA receptor-ion channel binding characteristics, despite neuronal membrane dysfunction. By preventing NMDA receptor-ion channel modification, allopurinol may produce a neuromodulatory effect during hypoxia and attenuate NMDA receptor mediated excitotoxicity.  相似文献   
226.
De Blasio BF  Laane M  Walmann T  Giaever I 《BioTechniques》2004,36(4):650-4, 656, 658 passim
A new method combining optical and electrical impedance measurements is described that enables submicroscopic cell movements to be monitored. The cells are grown on small gold electrodes that are transparent to light. This modified electrical cell-substrate impedance sensor (ECIS) allows simultaneous microscopic recording of both growth and motility, thus enabling cell confluence on the electrodes to be systematically correlated to the impedance in regular time intervals of seconds and for extended periods of time. Furthermore, the technique provides an independent measure of monolayer cell densities that we compare to calculated values from a theoretical model. We have followed the attachment and spreading behavior of epithelial Madin-Darby canine kidney strain I (MDCK-I) cell cultures on microelectrodes for up to 40 h. The studies reveal a high degree of correlation between the measured resistance at 4 kHz and the corresponding cell confluence in 4- to 6-h intervals with typical linear cross-correlation factors of r equaling approximately 0.9. In summary, the impedance measured with the ECIS technique provides a good quantitative measure of cell confluence.  相似文献   
227.
In recent years, monoclonal antibodies have emerged as an increasingly important class of human therapeutics. A variety of forms of antibodies, including fragments such as Fabs, Fab'2s and single-chain Fvs, are also being evaluated for a range of different purposes. A variety of expression systems and improvements within these systems have been developed to address these growing and diverse needs.  相似文献   
228.
We studied molecular and functional characteristics as well as hormonal regulation of the Na-K-2Cl cotransporter (NKCC) in the isolated rat heart and cardiomyocytes. NKCC activity was measured as bumetanide-sensitive (86)Rb(+) influx in isolated perfused rat hearts and isolated cardiomyocytes. Stimulation of alpha(1)-adrenoceptors (AR) by phenylephrine (30 microM) increased (86)Rb(+) influx. The NKCC inhibitor bumetanide (50 microM) reduced the response to phenylephrine by 45 +/- 13% (n = 12, P < 0.01). PD-98059 (10 microM), an inhibitor of the activation of the mitogen-activated protein kinases extracellular signal-regulated protein kinase 1 and 2 (ERK1/2), reduced the total response to phenylephrine by 51 +/- 13% (n = 10, P < 0.01) and eliminated the bumetanide-sensitive component, indicating that alpha(1)-AR mediated stimulation of NKCC is dependent on activation of ERK1/2. Inhibitors of protein kinase C or phosphatidylinositol 3-kinase had no effect. The presence of NKCC mRNA and protein was demonstrated in isolated rat cardiomyocytes. Phosphorylation of NKCC after alpha(1)-AR stimulation was shown by immunoprecipitation of the phosphoprotein from (32)P(i) prelabeled cardiomyocytes. Increased phosphorylation of the NKCC protein was also abolished by PD-98059. We conclude that the NKCC is present in rat cardiomyocytes and that ion transport by the cotransporter is regulated by alpha(1)-AR stimulation through phosphorylation of this protein involving the ERK pathway.  相似文献   
229.
An anthocyanin, 1, with the novel 4-substituted aglycone, 5-carboxypyranopelargonidin, was isolated in small amounts from the acidified, methanolic extract of strawberries, Fragaria ananassa Duch., by preparative HPLC after purification by partition against ethyl acetate, Amberlite XAD-7 and Sephadex LH-20 column chromatography. It was identified mainly by 2D NMR spectroscopy and electrospray LC-MS as the 3-O-beta-glucopyranoside of 5-carboxy-2-(4-hydroxyphenyl)-3,8-dihydroxy-pyrano[4,3,2-de]-1-benzopyrylium, an anthocyanidin which is homologous to 5-carboxypyranomalvidin (vitisidin A) reported in red wines and 5-carboxypyranocyanidin recently isolated from red onions. By comparison of UV-Vis absorption spectra, 1 showed in contrast to 2, pelargonidin 3-O-beta-glucopyranoside, a local absorption peak around 360 nm, a hypsochromic shift (8 nm) of the visible absorption maximum, and lack of a distinct UV absorption peak around 280 nm. The similarities between the absorption spectra of 1 in various acidic and neutral buffer solutions implied restricted formation of the instable colourless equilibrium forms, which are typical for most anthocyanins in weakly acidic solutions. The molar absorptivity (epsilon) of 1 varied little with pH contrary to similar values of for instance the major anthocyanin in strawberry, 2. However, 2 revealed higher epsilon-values than 1 at all pH values except 5.1. At pH 5.1, the epsilon-value of 1 (6250) was nearly four times the corresponding value of 2 (1720), which showed the potential of 5-carboxypyranopelargonidin derivatives as colorants in solutions with pH around 5. The colours of 1 and 2 in buffered solutions with pH 1.1 and pH 6.9 have been described by the CIELAB coordinates h(ab) (hue angle), C* (chroma), and L* (lightness).  相似文献   
230.
An 11.7-A-resolution cryo-EM map of the yeast 80S.eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin-ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet-like subunit rearrangement (RSR) occurs in the 80S.eEF2.sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号