全文获取类型
收费全文 | 4917篇 |
免费 | 265篇 |
国内免费 | 1篇 |
专业分类
5183篇 |
出版年
2023年 | 22篇 |
2022年 | 37篇 |
2021年 | 74篇 |
2020年 | 58篇 |
2019年 | 84篇 |
2018年 | 72篇 |
2017年 | 84篇 |
2016年 | 142篇 |
2015年 | 225篇 |
2014年 | 253篇 |
2013年 | 307篇 |
2012年 | 369篇 |
2011年 | 339篇 |
2010年 | 242篇 |
2009年 | 187篇 |
2008年 | 264篇 |
2007年 | 237篇 |
2006年 | 244篇 |
2005年 | 223篇 |
2004年 | 250篇 |
2003年 | 222篇 |
2002年 | 208篇 |
2001年 | 57篇 |
2000年 | 40篇 |
1999年 | 65篇 |
1998年 | 58篇 |
1997年 | 57篇 |
1996年 | 58篇 |
1995年 | 39篇 |
1994年 | 27篇 |
1993年 | 45篇 |
1992年 | 38篇 |
1991年 | 34篇 |
1990年 | 21篇 |
1989年 | 27篇 |
1988年 | 37篇 |
1987年 | 25篇 |
1986年 | 37篇 |
1985年 | 29篇 |
1984年 | 25篇 |
1983年 | 31篇 |
1982年 | 19篇 |
1981年 | 20篇 |
1980年 | 13篇 |
1979年 | 24篇 |
1978年 | 21篇 |
1977年 | 22篇 |
1976年 | 21篇 |
1974年 | 13篇 |
1973年 | 23篇 |
排序方式: 共有5183条查询结果,搜索用时 15 毫秒
141.
Acyl Editing and Headgroup Exchange Are the Major Mechanisms That Direct Polyunsaturated Fatty Acid Flux into Triacylglycerols 总被引:1,自引:0,他引:1
Philip D. Bates Abdelhak Fatihi Anna R. Snapp Anders S. Carlsson John Browse Chaofu Lu 《Plant physiology》2012,160(3):1530-1539
Triacylglycerols (TAG) in seeds of Arabidopsis (Arabidopsis thaliana) and many plant species contain large amounts of polyunsaturated fatty acids (PUFA). These PUFA are synthesized on the membrane lipid phosphatidylcholine (PC). However, the exact mechanisms of how fatty acids enter PC and how they are removed from PC after being modified to participate in the TAG assembly are unclear, nor are the identities of the key enzymes/genes that control these fluxes known. By reverse genetics and metabolic labeling experiments, we demonstrate that two genes encoding the lysophosphatidylcholine acyltransferases LPCAT1 and LPCAT2 in Arabidopsis control the previously identified “acyl-editing” process, the main entry of fatty acids into PC. The lpcat1/lpcat2 mutant showed increased contents of very-long-chain fatty acids and decreased PUFA in TAG and the accumulation of small amounts of lysophosphatidylcholine in developing seeds revealed by [14C]acetate-labeling experiments. We also showed that mutations in LPCATs and the PC diacylglycerol cholinephosphotransferase in the reduced oleate desaturation1 (rod1)/lpcat1/lpcat2 mutant resulted in a drastic reduction of PUFA content in seed TAG, accumulating only one-third of the wild-type level. These results indicate that PC acyl editing and phosphocholine headgroup exchange between PC and diacylglycerols control the majority of acyl fluxes through PC to provide PUFA for TAG synthesis.Plant oils are an important natural resource to meet the increasing demands of food, feed, biofuel, and industrial applications (Lu et al., 2011; Snapp and Lu, 2012). The fatty acid composition in the triacylglycerols (TAG), especially the contents of polyunsaturated fatty acids (PUFA) or other specialized structures, such as hydroxy, epoxy, or conjugated groups, determines the properties and thus the uses of plant oils (Dyer and Mullen, 2008; Dyer et al., 2008; Pinzi et al., 2009; Riediger et al., 2009). To effectively modify seed oils tailored for different uses, it is necessary to understand the fundamental aspects of how plant fatty acids are synthesized and accumulated in seed oils.In developing oilseeds, fatty acids are synthesized in plastids and are exported into the cytosol mainly as oleic acid, 18:1 (carbon number:double bonds), and a small amount of palmitic acid (16:0) and stearic acid (18:0; Ohlrogge and Browse, 1995). Further modification of 18:1 occurs on the endoplasmic reticulum in two major pathways (Fig. 1): (1) the 18:1-CoA may be elongated into 20:1- to 22:1-CoA esters by a fatty acid elongase, FAE1 (Kunst et al., 1992); (2) the dominant flux of 18:1 in many oilseeds is to enter the membrane lipid phosphatidylcholine (PC; Shanklin and Cahoon, 1998; Bates and Browse, 2012), where they can be desaturated by the endoplasmic reticulum-localized fatty acid desaturases including the oleate desaturase, FAD2, and the linoleate desaturase, FAD3, to produce the polyunsaturated linoleic acid (18:2) and α-linolenic acid (18:3; Browse et al., 1993; Okuley et al., 1994). The PUFA may be removed from PC to enter the acyl-CoA pool, or PUFA-rich diacylglycerol (DAG) may be derived from PC by removal of the phosphocholine headgroup (Bates and Browse, 2012). The PUFA-rich TAG are then produced from de novo-synthesized DAG or PC-derived DAG (Bates and Browse, 2012) and PUFA-CoA by the acyl-CoA:diacylglycerol acyltransferases (DGAT; Hobbs et al., 1999; Zou et al., 1999). Alternatively, PUFA may be directly transferred from PC onto DAG to form TAG by an acyl-CoA-independent phospholipid:diacylglycerol acyltransferase (PDAT; Dahlqvist et al., 2000). Recent results demonstrated that DGAT and PDAT are responsible for the majority of TAG synthesized in Arabidopsis (Arabidopsis thaliana) seeds (Zhang et al., 2009).Open in a separate windowFigure 1.Reactions involved in the flux of fatty acids into TAG. De novo glycerolipid synthesis is shown in white arrows, acyl transfer reactions are indicated by dashed lines, and the movement of the lipid glycerol backbone through the pathway is shown in solid lines. Major reactions (in thick lines) controlling the flux of fatty acid from PC into TAG are as follows: LPC acylation reaction of acyl editing by LPCAT (A); PC deacylation reaction of acyl editing by the reverse action of LPCAT or phospholipase A (B); and the interconversion of DAG and PC by PDCT (C). Substrates are in boldface, enzymatic reactions are in italics. FAD, Fatty acid desaturase; FAS, fatty acid synthase; GPAT, acyl-CoA:G3P acyltransferase; LPA, lysophosphatidic acid; LPAT, acyl-CoA:LPA acyltransferase; PA, phosphatidic acid; PLC, phospholipase C; PLD, phospholipase D.The above TAG synthesis model highlights the importance of acyl fluxes through PC for PUFA enrichment in plant oils. However, the exact mechanisms of how fatty acids enter PC and how they are removed from PC after being modified to participate in the TAG assembly are unclear, nor are the identities of the enzymes/genes that control these fluxes known. The traditional view is that 18:1 enters PC through de novo glycerolipid synthesis (Fig. 1; Kennedy, 1961): the sequential acylation of glycerol-3-phosphate (G3P) at the sn-1 and sn-2 positions produces phosphatidic acid; subsequent removal of the phosphate group at the sn-3 position of phosphatidic acid by phosphatidic acid phosphatases (PAPs) produces de novo DAG; finally, PC is formed from DAG by a cytidine-5′-diphosphocholine:diacylglycerol cholinephosphotransferase (CPT; Slack et al., 1983; Goode and Dewey, 1999). However, metabolic labeling experiments in many different plant tissues by us and others (Williams et al., 2000; Bates et al., 2007, 2009; Bates and Browse, 2012; Tjellström et al., 2012) have demonstrated that the majority of newly synthesized fatty acids (e.g. 18:1) enter PC by a process termed “acyl editing” rather than by proceeding through de novo PC synthesis. Acyl editing is a deacylation-reacylation cycle of PC that exchanges the fatty acids on PC with fatty acids in the acyl-CoA pool (Fig. 1, A and B). Through acyl editing, newly synthesized 18:1 can be incorporated into PC for desaturation and PUFA can be released from PC to the acyl-CoA pool to be utilized for glycerolipid synthesis.Additionally, there is accumulating evidence that many plants utilize PC-derived DAG to synthesize TAG laden with PUFA (Bates and Browse, 2012). PC-derived DAG may be synthesized through the reverse reaction of the CPT (Slack et al., 1983, 1985) or by the phospholipases C and D (followed by PAP). However, our recent discovery indicates that the main PC-to-DAG conversion is catalyzed by a phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT) through the phosphocholine headgroup exchange between PC and DAG (Fig. 1C; Lu et al., 2009; Hu et al., 2012). The PDCT is encoded by the REDUCED OLEATE DESATURATION1 (ROD1) gene (At3g15820) in Arabidopsis, which is responsible for about 40% of the flux of PUFA from PC through DAG into TAG synthesis (Lu et al., 2009). Acyl editing and PC-DAG interconversion through PDCT may work together to generate PUFA-rich TAG in oilseed plants (Bates and Browse, 2012).The enzymes/genes involved in the incorporation of 18:1 into PC through acyl editing are not known. However, stereochemical localization of newly synthesized fatty acid incorporation into PC predominantly at the sn-2 position (Bates et al., 2007, 2009; Tjellström et al., 2012) strongly suggest that the acyl editing cycle proceeds through the acylation of lysophosphatidylcholine (LPC) by acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs [Enzyme Commission 2.3.1.23]; Fig. 1A). High LPCAT activity has been detected in many different oilseed plants that accumulate large amounts of PUFA in TAG (Stymne and Stobart, 1987; Bates and Browse, 2012), suggesting the potential ubiquitous involvement of LPCAT in the generation of PUFA-rich TAG. Several possible pathways for the removal of acyl groups from PC to generate the lysophosphatidylcholine within the acyl editing cycle have been proposed. The acyl groups may be released from PC to enter the acyl-CoA pool via the reverse reactions of LPCATs (Stymne and Stobart, 1984) or by reactions of phospholipase A (Chen et al., 2011) followed by the acyl-CoA synthetases (Shockey et al., 2002). The main focus of this study was to identify the genes and enzymes involved in the incorporation of fatty acids into PC through acyl editing in Arabidopsis and to quantify the contribution of acyl editing and PDCT-based PC-DAG interconversion to controlling the flux of PUFA from PC into TAG. Herein, we demonstrate that mutants of two Arabidopsis genes encoding LPCATs (At1g12640 [LPCAT1] and At1g63050 [LPCAT2]) have reduced TAG
PUFA content. Analysis of the acyl-editing cycle through metabolic labeling of developing seeds with [14C]acetate indicate that the lpcat1/lpcat2 double mutant was devoid of acyl editing-based incorporation of newly synthesized fatty acids into PC, indicating that these two genes are responsible for the acylation of LPC during acyl editing. Additionally, the triple mutant rod1/lpcat1/lpcat2 indicated that PDCT-based PC-DAG interconversion and acyl editing together provide two-thirds of the flux of PUFA from PC to TAG in Arabidopsis seeds. 相似文献
142.
Anders RA Subudhi SK Wang J Pfeffer K Fu YX 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(2):1295-1300
The liver has an enormous capacity to regenerate in response to insults, but the cellular events and molecules involved in liver regeneration are not well defined. In this study, we report that ligands expressed on the surface of lymphocytes have a substantial effect on liver homeostasis. We demonstrate that a T cell-restricted ligand, homologous to lymphotoxin, exhibits inducible expression, competes with herpesvirus glycoprotein D for herpesvirus entry mediator on T cells (LIGHT), signaling through the lymphotoxin receptor (LTbetaR) expressed on mature hepatocytes induces massive hepatomegaly. Using genetic targeting and a receptor fusion protein, we further show that mice deficient in LTbetaR signaling have a severe defect in their ability to survive partial hepatectomy with marked liver damage and failure to initiate DNA synthesis after partial hepatectomy. We further show that mice deficient in a LTbetaR ligand, LTalpha, also show decreased ability to survive partial hepatectomy with similar levels of liver damage and decreased DNA synthesis. Therefore, our study has revealed an unexpected role of lymphocyte-restricted ligands and defined a new pathway in supporting liver regeneration. 相似文献
143.
Vrecl M Drinovec L Elling C Heding A 《Journal of receptor and signal transduction research》2006,26(5-6):505-526
Using bioluminescence resonance energy transfer (BRET) we studied opsin oligomerization in heterologous expression systems and quantitatively assessed its oligomerization state. BRET2 saturation and competition experiments were performed with live COS-7 cells expressing Rluc-and GFP2-tagged receptor constructs. BRET2 saturation curves obtained were hyperbolic, and the calculated oligomerization state (N = 1 for dimers) suggested that opsin (N = 1.34 +/- 0.25) forms higher oligomers. Very high BRET2 values obtained for the opsin homo-dimer pair indicated a large energy transfer efficiency (E) and for cases where E > 0.1 a modified saturation curve was proposed. The existence of homo-dimer complexes was additionally supported by competition assay results and was also observed in HEK-293 cells. Furthermore, evidence was provided for homo-and hetero-dimerization of family A (beta2-adrenergic) and B (gastric inhibitory polypeptide, GIP) receptors. In summary, these experiments demonstrate homo-and hetero-dimerization for opsin, beta 2-adrenergic, and GIP receptors. 相似文献
144.
Several competing hypotheses have been put forward to explain why females of many species mate preferentially with males possessing the most conspicuous signals (e.g., ornaments, displays, or songs). We performed a laboratory experiment using two species of poison frogs, Dendrobates leucomelas and Epipedobates tricolor, to test the hypothesis that male calling performance is an honest indicator of parental quality. Our analyses are based on data from behavioral observations of mating activities of captive-reared individuals (and their offspring) that were housed in terraria for four consecutive breeding seasons. Male mating success increased with male calling rate and chirp duration in both species, suggesting that females preferred males with more elaborate calls. Because calling performance improved with age in D. leucomelas, female poison frogs that prefer males with more elaborate calls in the wild may end up mating with older males that have already proven their ability to survive. Females that mated with good callers obtained higher quality offspring. Eggs fertilized by males with high calling rates and long chirp durations had higher hatching success and produced tadpoles that were more likely to metamorphose into surviving frogs. As a consequence, females that mated with males with high calling performance obtained more surviving offspring per egg, compared to females that mated with poor callers. Collectively, our findings comply with the notion that female poison frogs prefer to mate with good callers because calling performance is a reliable predictor of offspring quality. The possible influence of maternal allocation and reasons for the strong effect size compared to previous studies are discussed. 相似文献
145.
Ferreira C Silva S van Voorst F Aguiar C Kielland-Brandt MC Brandt A Lucas C 《FEMS yeast research》2006,6(7):1027-1038
Saccharomyces cerevisiae Gup1p and its homologue Gup2p, members of the superfamily of membrane-bound O-acyl transferases, were previously associated with glycerol-mediated salt-stress recovery and glycerol symporter activity. Several other phenotypes suggested Gup1p involvement in processes connected with cell structure organization and biogenesis. The gup1Delta mutant is also thermosensitive and exhibits an altered plasma membrane lipid composition. The present work shows that the thermosensitivity is independent of glycerol production and retention. Furthermore, the mutant grows poorly on salt, ethanol and weak carboxylic acids, suggestive of a malfunctioning membrane potential. Additionally, gup1Delta is sensitive to cell wall-perturbing agents, such as Calcofluor white, Zymolyase, lyticase and sodium dodecyl sulphate and exhibits a sedimentation/aggregation phenotype. Quantitative analysis of cell wall components yielded increased contents of chitin and beta-1,3-glucans and lower amounts of mannoproteins. Consistently, scanning electron microscopy showed a strikingly rough surface morphology of the mutant cells. These results suggest that the gup1Delta is affected in cell wall assembly and stability, although the Slt2p/MAP kinase from the PKC pathway was phosphorylated during hypo-osmotic shock to a normal extent. Results emphasize the pleiotropic nature of gup1Delta, and are consistent with a role of Gulp1p in connection with several pathways for cell maintenance and construction/remodelling. 相似文献
146.
Anders S. Larsen Conny B. Asmussen Els Coart Ditte C. Olrik Erik D. Kjær 《Tree Genetics & Genomes》2006,2(2):86-97
The aim of the present study was to investigate the genetic variation in Danish populations of the endangered European crab apple (Malus sylvestris). Special emphasis was given to hybridization between the wild species and its cultivated relative Malus ×domestica. A total of 178 wild individuals from four Danish populations were studied along with a reference sample of 29 old cultivars. The genetic variation within and among samples was studied at ten microsatellite marker loci. Additionally, a morphological analysis was carried out to identify hybrids and test for correspondence between phenotypic and genotypic indices of hybridization. From application of ordination and a model-based cluster analysis to the molecular data, two clusters were identified consisting of wild and cultivated individuals, respectively. This indicates that pronounced admixture between the two species is not present. At the population level, a high correspondence was found between geographic isolation from M. ×domestica and genotypic and morphological indices of hybridization. As expected, isolated populations appeared less affected by hybridization than poorly isolated populations. Isolated “pure” M. sylvestris populations could thus be identified. However, morphological and molecular evidences of hybridization were found to be divergent at the individual level. This is suggestive of some historical introgression into the M. sylvestris gene pool and indicates that relying exclusively on either morphological or molecular characters as diagnostic markers in studies of hybridization between M. ×domestica and M. sylvestris might lead to fallible results. Combined application of genetic and morphological markers is therefore recommended. 相似文献
147.
A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast 总被引:3,自引:0,他引:3
下载免费PDF全文
![点击此处可从《RNA (New York, N.Y.)》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant. 相似文献
148.
A combined transmembrane topology and signal peptide prediction method 总被引:31,自引:0,他引:31
An inherent problem in transmembrane protein topology prediction and signal peptide prediction is the high similarity between the hydrophobic regions of a transmembrane helix and that of a signal peptide, leading to cross-reaction between the two types of predictions. To improve predictions further, it is therefore important to make a predictor that aims to discriminate between the two classes. In addition, topology information can be gained when successfully predicting a signal peptide leading a transmembrane protein since it dictates that the N terminus of the mature protein must be on the non-cytoplasmic side of the membrane. Here, we present Phobius, a combined transmembrane protein topology and signal peptide predictor. The predictor is based on a hidden Markov model (HMM) that models the different sequence regions of a signal peptide and the different regions of a transmembrane protein in a series of interconnected states. Training was done on a newly assembled and curated dataset. Compared to TMHMM and SignalP, errors coming from cross-prediction between transmembrane segments and signal peptides were reduced substantially by Phobius. False classifications of signal peptides were reduced from 26.1% to 3.9% and false classifications of transmembrane helices were reduced from 19.0% to 7.7%. Phobius was applied to the proteomes of Homo sapiens and Escherichia coli. Here we also noted a drastic reduction of false classifications compared to TMHMM/SignalP, suggesting that Phobius is well suited for whole-genome annotation of signal peptides and transmembrane regions. The method is available at as well as at 相似文献
149.
A major cost of social behavior is the increased risk of exposure to parasites and infection. Animals utilize social information, including chemical signals, to recognize and avoid conspecifics infected with either endoparasites or ectoparasites. Here, we briefly discuss the relations among odors, parasite recognition, and avoidance, and consider some of the associated hormonal, neural, and genomic mechanisms. In rodents, odor cues mediate sexual and competitive interactions and are of major importance in individual recognition and mate detection and choice. Female mice distinguish between infected and uninfected males by urinary odors, displaying aversive response to, and avoidance of, the odors of infected individuals. This reduces both the likelihood of the transmission of parasites to themselves and allows females to select for parasite-free males. This set of olfactory and mate choice responses can be further modulated by social factors such as previous experience and exposure to infected males and the mate choices of other females. Male mice, who also face the threat of infection, similarly distinguish and avoid parasitized individuals by odor, thus reducing their likelihood of infection. This recognition and avoidance of the odors of infected individuals involves genes for the neuropeptide, oxytocin (OT), and estrogenic mechanisms. Mice with deletions of the oxytocin gene [OT knockout mice (OTKO)] and mice whose genes for estrogen receptor (ER)-alpha or ER-beta have been disrupted [ER knockout mice (ERKO), alpha-ERKO and beta-ERKO] are specifically impaired in their recognition of, aversion to, and memory of the odors of infected individuals. These findings reveal some of the genes involved in the mediation of social recognition in the ecologically relevant context of parasite recognition and avoidance. 相似文献
150.
The identification of inteins in viral genomes is becoming increasingly common. Inteins are selfish DNA elements found within coding regions of host proteins. Following translation, they catalyse their own excision and the formation of a peptide bond between the flanking protein regions. Many inteins also display homing endonuclease function. Here, the newly identified coccolithovirus intein is described and is predicted to have both self-splicing and homing endonuclease activity. The biochemical mechanism of its protein splicing activity is hypothesised, and the prevalence of the intein among natural coccolithovirus isolates is tested. 相似文献