首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13699篇
  免费   1461篇
  国内免费   2篇
  2021年   176篇
  2020年   111篇
  2019年   124篇
  2018年   138篇
  2017年   146篇
  2016年   225篇
  2015年   364篇
  2014年   465篇
  2013年   603篇
  2012年   648篇
  2011年   638篇
  2010年   432篇
  2009年   337篇
  2008年   512篇
  2007年   577篇
  2006年   507篇
  2005年   517篇
  2004年   490篇
  2003年   434篇
  2002年   472篇
  2001年   412篇
  2000年   402篇
  1999年   345篇
  1998年   180篇
  1997年   156篇
  1996年   150篇
  1995年   128篇
  1994年   150篇
  1993年   130篇
  1992年   242篇
  1991年   240篇
  1990年   244篇
  1989年   220篇
  1988年   226篇
  1987年   244篇
  1986年   184篇
  1985年   210篇
  1984年   186篇
  1983年   182篇
  1982年   147篇
  1981年   133篇
  1980年   127篇
  1979年   178篇
  1978年   169篇
  1977年   129篇
  1976年   131篇
  1975年   138篇
  1974年   146篇
  1973年   124篇
  1972年   149篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Glycoside hydrolases have been classified into over 66 families on the basis of amino acid sequence. Recently a number of these families have been grouped into "clans" which share a common fold and catalytic mechanism [Henrissat, B., and Bairoch, A. (1996) Biochem. J. 316, 695-696]. Glycoside hydrolase Clan GH-C groups family 11 xylanases and family 12 cellulases, which share the same jellyroll topology, with two predominantly antiparallel beta-sheets forming a long substrate-binding cleft, and act with net retention of anomeric configuration. Here we present the three-dimensional structure of a family 12 endoglucanase, Streptomyces lividans CelB2, in complex with a 2-deoxy-2-fluorocellotrioside. Atomic resolution (1.2 A) data allow clear identification of two distinct species in the crystal. One is the glycosyl-enzyme intermediate, with the mechanism-based inhibitor covalently linked to the nucleophile Glu 120, and the other a complex with the reaction product, 2-deoxy-2-fluoro-beta-D-cellotriose. The active site architecture of the complex provides insight into the double-displacement mechanism of retaining glycoside hydrolases and also sheds light on the basis of the differences in specificity between family 12 cellulases and family 11 xylanases.  相似文献   
992.
Targeting DNA damage by triplex-forming oligonucleotides (TFOs) represents a way of modifying gene expression and structure and a possible approach to gene therapy. We have determined that this approach can deliver damage with great specificity to sites in the human gene for the G-protein-linked receptor rhodopsin, mutations of which can lead to the genetic disorder autosomal dominant retinitis pigmentosa. We have introduced DNA monoadducts and interstrand cross-links at multiple target sites within the gene using TFOs with a photoactivatable psoralen group at the 5'-end. The extent of formation of photoadducts (i.e., monoadducts and cross-links) was measured at target sites with a 5'-ApT sequence at the triplex-duplex junction and at a target site with 5'-ApT and 5'-TpA sequences located four and seven nucleotides away, respectively. To improve psoralen reactivity at more distant sites, psoralen moieties were attached to TFOs with nucleotide "linkers" from two to nine nucleotides in length. High-affinity binding was maintained with linkers of up to 10 nucleotides, but affinities tended to decrease somewhat with increasing linker length due to faster dissociation kinetics. DNase I footprinting indicated little, if any, interaction between linkers and the duplex. Psoralen-TFO conjugates formed DNA cross-links with high efficiency (56-65%) at 5'-ApT sequences located at triplex junctions. At a 5'-ApT site four nucleotides away, the efficiency varied with linker length; a four-nucleotide linker gave the highest efficiency. Duplexes with 5'-TpA and 5'-ApT sites two nucleotides away, in otherwise identical sequences, were cross-linked with efficiencies of 56 and 38%, respectively. These results indicate that TFO-linker-psoralen conjugates allow simultaneous, efficient targeting of multiple sites in the human rhodopsin gene.  相似文献   
993.
Autosomal dominant periodic fever syndromes are characterized by unexplained episodes of fever and severe localized inflammation. In seven affected families, we found six different missense mutations of the 55 kDa tumor necrosis factor receptor (TNFR1), five of which disrupt conserved extracellular disulfide bonds. Soluble plasma TNFR1 levels in patients were approximately half normal. Leukocytes bearing a C52F mutation showed increased membrane TNFR1 and reduced receptor cleavage following stimulation. We propose that the autoinflammatory phenotype results from impaired downregulation of membrane TNFR1 and diminished shedding of potentially antagonistic soluble receptor. TNFR1-associated periodic syndromes (TRAPS) establish an important class of mutations in TNF receptors. Detailed analysis of one such mutation suggests impaired cytokine receptor clearance as a novel mechanism of disease.  相似文献   
994.
MHC class I genes of the channel catfish: sequence analysis and expression   总被引:2,自引:0,他引:2  
 Four cDNAs encoding the major histocompatibility complex (MHC) class I α chain were isolated from a channel catfish clonal B-cell cDNA library. Sequence analysis suggests these cDNAs represent three different MHC class I loci. All cDNAs encoded conserved residues characteristic of the MHC class I α chain: namely, those involved in peptide binding, salt bridges, disulfide bond formation, and glycosylation. Southern blot analyses of individual outbred and second-generation gynogenetic fish indicated the existence of both polygenic and polymorphic loci. Northern blot studies demonstrated that catfish B, T, and macrophage cell lines transcribed markedly higher levels of class I α and β2-microglobulin (β2m) mRNA than fibroblast cell lines. In addition, immunoprecipitation data showed that a 41 000 M r glycoprotein (presumably class I α) was associated with β2m on the surface of catfish B cells. This latter finding is the first direct evidence for the cell surface association of β2m with the MHC class I α chain on teleost cells and supports the notion that functional MHC class I proteins exist in teleosts. Received: 25 March 1998 / Revised: 28 July 1998  相似文献   
995.
The objectives of this study were to determine the variation of head areas of normal spermatozoa attributable to breed, individual bull and ejaculate and to verify separation of X and Y chromosome-bearing spermatozoa and separation effectiveness. Spermatozoa were evaluated using video enhanced contrast microscopy combined with video intensified fluorescent microscopy and the polymerase chain reaction (PCR). In Experiment 1, spermatozoal head areas were measured from 2 ejaculates collected from bulls of 3 beef and 2 dairy breeds. No differences in head areas were found between breeds or between bulls within breeds; variation was observed among ejaculates from individual bulls across breeds. In Experiment 2, spermatozoa from 5 ejaculates were separated on individual SEPDEVICEs (Patented). Head area, fluorescent intensity and PCR of spermatozoa retained in the SEPDEVICEs suggested a separation based on size in 1 of 5 samples. Ejaculate variation in head areas affected separation efficiency.  相似文献   
996.
Previous reports indicate that some foveally discriminable compound gratings are indiscriminable in peripheral vision, even when they are scaled by the ratio of peripheral to foveal grating acuity. To determine the stimulus properties that limit peripheral discrimination, we used Gaussian derivatives of various orders. These patterns are spatially localized and have intrinsic even or odd symmetry. Our results show that certain odd symmetric patterns are discriminable in the periphery, while others are not. Furthermore, certain even symmetric patterns are not peripherally discriminable. These data are consistent with three limitations on peripheral pattern discrimination: (1) Patterns that produce different maximum neural responses will be peripherally discriminable. (2) Positional uncertainty and undersampling degrade discrimination of high spatial frequency patterns in the periphery. (3) Patterns generating substantial neural activity within a constrained region are processed as textures in peripheral vision so that pattern details within that region are no longer available for discrimination. A neural model incorporating inhibition of simple cells by complex cells implements a transition between contour analysis and texture analysis in peripheral vision and explains the experimental data.  相似文献   
997.
In this paper, we describe the fine structure of the branchial epithelium of the amphibious, air-breathing mudskipper Periophthalmodon schlosseri, and relate the observed structure to functions in gas exchange, and to the elimination of sodium chloride and ammonia. Also, we describe the fine structure of the opercular epithelimicrom. The gill lamellar epithelium is thickened by the presence of large mitochondria-rich (MR) cells. These MR cells are further characterized by an extensive tubular system that is continuous with the basolateral plasma membrane and by a deep apical crypt often lined with microvilli. There are very few specialized MR accessory cells, which are associated with NaCl excretion in marine teleosts. Instead, MR cells are commonly isolated from each other laterally by flattened cells rich in intermediate filaments. These filament-rich (FR) cells are interconnected by desmosomes and have unusual canaliculi. These branchial FR cells are unique to P. schlosseri and may have a structural role. Electron-dense pavement cells rich in vesicles and large vacuous mitochondria compose the superficial layer of the epithelium. The unusual morphology of P. schlosseri's gill lamellae may be related to the animal's ability to effectively eliminate ammonia during air exposure. The inner opercular lining and parts of the leading edge of the filament have intraepithelial capillaries, which provide a more suitable gas exchange surface than the thickened lamellae with its restricted interlamellar water spaces. The arrangement of respiratory and ion exchange epithelia is opposite to that found in all other fish in which the lamellae typically function in gas exchange and the gill filament in ion regulation.  相似文献   
998.
Microtubules are intrinsically dynamic polymers. Two kinds of dynamic behaviors, dynamic instability and treadmilling, are important for microtubule function in cells. Both dynamic behaviors appear to be tightly regulated, but the cellular molecules and the mechanisms responsible for the regulation remain largely unexplored. While microtubule dynamics can be modulated transiently by the interaction of regulatory molecules with soluble tubulin, the microtubule itself is likely to be the primary target of cellular molecules that regulate microtubule dynamics. The antimitotic drugs that modulate microtubule dynamics serve as excellent models for such cellular molecules. Our laboratory has been investigating the interactions of small drug molecules and stabilizing microtubule-associated proteins (MAPs) with microtubule surfaces and ends. We find that drugs such as colchicine, vinblastine, and taxol, and stabilizing MAPs such as tau, strongly modulate microtubule dynamics at extremely low concentrations under conditions in which the microtubule polymer mass is minimally affected. The powerful modulation of the dynamics is brought about by the binding of only a few drug or MAP molecules to distinct binding sites at the microtubule surface or end. Based upon our understanding of the well-studied drugs and stabilizing MAPs, it is clear that molecules that regulate dynamics such as Kin 1 and stathmin could bind to a large number of distinct tubulin sites on microtubules and employ an array of mechanisms to selectively and powerfully regulate microtubule dynamics and dynamics-dependent cellular functions.  相似文献   
999.
1000.
The Drosophila melanogaster L27a gene encodes a ribosomal protein which is a member of the L15 family of ribosomal proteins. D.m. L27a is closely related to the mammalian protein that has been found differentially expressed in lung cancer tissues and therefore could be involved in the control of cell proliferation such as the ribosomal protein S6. Our work elucidates the role of DIP1 which is a novel protein that we found in Drosophila. We performed a two-hybrid system assay and identified the L27a protein as an interactor of DIP1. The interaction was then validated by in vitro binding assays. DIP1, similar to other nuclear proteins in eukaryotes, is localized to the nuclear periphery and chromatin domain in all nuclei, but disappears at the metaphase. It is possible that in D.m. L27a protein, via interaction with DIP1, could be involved in protein synthesis as well as in cell cycle regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号