首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1672篇
  免费   126篇
  国内免费   1篇
  1799篇
  2023年   8篇
  2022年   31篇
  2021年   55篇
  2020年   25篇
  2019年   30篇
  2018年   36篇
  2017年   51篇
  2016年   59篇
  2015年   72篇
  2014年   84篇
  2013年   138篇
  2012年   162篇
  2011年   117篇
  2010年   86篇
  2009年   73篇
  2008年   78篇
  2007年   79篇
  2006年   75篇
  2005年   79篇
  2004年   67篇
  2003年   51篇
  2002年   52篇
  2001年   20篇
  2000年   18篇
  1999年   11篇
  1998年   14篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1993年   8篇
  1992年   11篇
  1991年   11篇
  1990年   14篇
  1989年   10篇
  1988年   14篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1983年   9篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   6篇
  1974年   5篇
  1972年   7篇
  1971年   5篇
排序方式: 共有1799条查询结果,搜索用时 15 毫秒
281.
Comparative genomics-based synteny analysis has proved to be an effective strategy to understand evolution of genomic regions spanning a single gene (micro-unit) to large segments encompassing hundreds of kilobases to megabases. Brassicaceae is in a unique position to contribute to understanding genome and trait evolution through comparative genomics because whole genome sequences from as many as nine species have been completed and are available for analysis. In the present work, we compared genomic loci surrounding the KCS17-KCS18 cluster across these nine genomes. KCS18 or FAE 1 gene encodes beta-ketoacyl synthase, (β-KCS) a membrane-bound enzyme that catalyses the key rate-limiting step during synthesis of VLCFAs such as erucic acid (C22) present in seed oil in Brassicaceae by elongating carbon chain from C18 to C22; knowledge on role of KCS17 in plant development is however lacking. Synteny across the genomic segments harbouring FAE1 showed variable levels of gene retention ranging between 26% (Arabidopsis thaliana and Brassica napus C03) and 89% (between A. thaliana and Brassica rapa A01), and gene density ranged between 1 gene/2.86 kb and 1 gene/4.88 kb. Interestingly, in diploid Brassica species, FAE1 was retained in only one of the sub-genomes in spite of the presence of three sub-genomes created as a result of genome triplication; in contrast, FAE1 was present at three loci, with four copies in Camellina sativa which is also known to have experienced a recent genome triplication revealing contrasting fates upon duplication. The organization of KCS17 and KCS18 as head-to-tail cluster was conserved across most of the species, except the C genome containing Brassicas, namely B. oleracea and B. napus, where disruptions because of other genes were observed. Even in the conserved blocks, the distance between KCS17 and KCS18 varied; the functional implication of the organization of KCS17-KCS18 as a cluster vis-à-vis fatty acid biosynthesis needs to be dissected, as the cis-regulatory region is expected to be present in the intergenic space. Phylogenetic analysis of KCS gene family along with KCS17-KCS18 from members of Brassicaceae reveals their ancestral relationship with KCS8-KCS9 block. Further comparative functional analysis between KCS8, KCS9, KCS16, KCS17 and KCS18 across evolutionary time-scale will be required to understand the conservation or diversification of roles of these members of KCS family in fatty acid biosynthesis during course of evolution.  相似文献   
282.
283.
The recent establishment of induced pluripotent stem (iPS) cells promises the development of autologous cell therapies for degenerative diseases, without the ethical concerns associated with human embryonic stem (ES) cells. Initially, iPS cells were generated by retroviral transduction of somatic cells with core reprogramming genes. To avoid potential genotoxic effects associated with retroviral transfection, more recently, alternative non-viral gene transfer approaches were developed. Before a potential clinical application of iPS cell-derived therapies can be planned, it must be ensured that the reprogramming to pluripotency is not associated with genome mutagenesis or epigenetic aberrations. This may include direct effects of the reprogramming method or “off-target” effects associated with the reprogramming or the culture conditions. Thus, a rigorous safety testing of iPS or iPS-derived cells is imperative, including long-term studies in model animals. This will include not only rodents but also larger mammalian model species to allow for assessing long-term stability of the transplanted cells, functional integration into the host tissue, and freedom from undifferentiated iPS cells. Determination of the necessary cell dose is also critical; it is assumed that a minimum of 1 billion transplantable cells is required to achieve a therapeutic effect. This will request medium to long-term in vitro cultivation and dozens of cell divisions, bearing the risk of accumulating replication errors. Here, we review the clinical potential of human iPS cells and evaluate which are the most suitable approaches to overcome or minimize risks associated with the application of iPS cell-derived cell therapies.  相似文献   
284.
Abstract

Reproduction is a part of life cycle with great environmental dependence. In contrast to temperate avian species, which mostly breed during summer, the Indian songbirds have more flexible breeding programs and exhibit a spectrum of reproductive strategies with the breeding season scattered all over the year. Control of breeding cycles in the Indian songbirds, therefore, are broadly viewed in light of two strategies (i) birds showing strong photoperiodic component in regulation of reproductive and post-reproductive events (ii) birds that do not exhibit typical photoperiodic regulation indicating the involvement of an inherent rhythm of reproduction. Both circadian and circannual rhythms have been demonstrated to regulate annual gonadal cycles of Indian songbirds. While photoperiod continues to be a predominant proximate factor for timing of breeding in majority of Indian songbirds investigated so far, some studies reveal the role of non photoperiodic cues such as the food availability, temperature, rainfall, etc. in timing/modulating the timing of breeding. The conversion or non-conversion of thyroxine to triiodothyronine may act as a long or short photoperiod signal and may up or downregulate the synthesis and release of GnRH-I in hypothalamus, FSH and LH in anterior pituitary and gonadal steroids in gonads causing gonadal growth or regression, respectively.  相似文献   
285.
286.
287.
288.

Background  

In analyzing the stability of DNA replication origins in Saccharomyces cerevisiae we faced the question whether one set of sequences is significantly enriched in the number and/or the quality of the matches of a particular position weight matrix relative to another set.  相似文献   
289.
Angiogenesis represents the outgrowth of new blood vessels from existing ones, a physiologic process that is vital to supply nourishment to newly forming tissues during development and tissue remodeling and repair (wound healing). Regulation of angiogenesis in the healthy body occurs through a fine balance of angiogenesis-stimulating factors and angiogenesis inhibitors. When this balance is disturbed, excessive or deficient angiogenesis can result and contribute to development of a wide variety of pathological conditions. The therapeutic stimulation or suppression of angiogenesis could be the key to abrogating these diseases. In recent years, tissue engineering has emerged as a promising technology for regenerating tissues or organs that are diseased beyond repair. Among the critical challenges that deter the practical realization of the vision of regenerating functional tissues for clinical implantation, is how tissues of finite size can be regenerated and maintained viable in the long-term. Since the diffusion of nutrients and essential gases to cells, and removal of metabolic wastes is typically limited to a depth of 150–250 µm from a capillary (3–10 cells thick), tissue constructs must mandatorily permit in-growth of a blood capillary network to nourish and sustain the viability of cells within. The purpose of this article is to provide an overview of the role and significance of hyaluronan (HA), a glycosaminoglycan (GAG) component of connective tissues, in physiologic and pathological angiogenesis, its applicability as a therapeutic to stimulate or suppress angiogenesis in situ within necrotic tissues in vivo, and the factors determining its potential utility as a pro-angiogenic stimulus that will enable tissue engineering of neo-vascularized and functional tissue constructs for clinical use.Key words: angiogenesis, hyaluronan, oligosaccharides, neo-vascularization, tissue engineering, regenerative medicine  相似文献   
290.
MYH9 encodes a class II nonmuscle myosin heavy chain-A (NMHC-IIA), a widely expressed 1960 amino acid polypeptide, with translated molecular weight of 220 kDa. From studies of type II myosin in invertebrates and analogy with the skeletal and smooth muscle myosin II, NMHC-IIA is considered to be involved in diverse cellular functions, including cell shape, motility and division. The current study assessed the consequences of two separate, naturally occurring MYH9 dominant mutant alleles, MYH9(R702C) and MYH9(R705H) linked to syndromic and nonsyndromic hearing loss, respectively, upon diverse NMHC-IIA related functions in two separate cultured cell lines. MYH9-siRNA-induced inhibition of NMHC-IIA in HeLa cells or HEK293 cells resulted in alterations in their shape, actin cytoskeleton and adhesion properties. However, HeLa or HEK293 cells transfected with naturally occurring MYH9 mutant alleles, MYH9(R702C) or MYH9(R705H), as well as in vitro generated deletion derivatives, MYH9(DeltaN592) or MYH9(DeltaC570), were unaffected. The effects of MYH9-siRNA-induced suppression underline the critical role of NMHC-IIA in maintenance of cell shape and adhesion. However, the results also indicate that the NMHC-IIA mutants, R702C and R705H do not inactivate or suppress the endogenous wild type NMHC-IIA within the HeLa or HEK293 cell assay system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号