首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   3篇
  146篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   5篇
  2012年   12篇
  2011年   14篇
  2010年   6篇
  2009年   9篇
  2008年   5篇
  2007年   12篇
  2006年   5篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   5篇
  1998年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1974年   2篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
91.
Template driven chemical ligation of fluorogenic probes represents a powerful method for DNA and RNA detection and imaging. Unfortunately, previous techniques have been hampered by requiring chemistry with sluggish kinetics and background side reactions. We have developed fluorescent DNA probes containing quenched fluorophore-tetrazine and methyl-cyclopropene groups that rapidly react by bioorthogonal cycloaddition in the presence of complementary DNA or RNA templates. Ligation increases fluorescence with negligible background signal in the absence of hybridization template. Reaction kinetics depend heavily on template length and linker structure. Using this technique, we demonstrate rapid discrimination between single template mismatches both in buffer and cell media. Fluorogenic bioorthogonal ligations offer a promising route towards the fast and robust fluorescent detection of specific DNA or RNA sequences.  相似文献   
92.
93.
The interaction of mesenchymal stromal cells (MSCs) with paracrine signals and immunological cells, and their responses and regenerative commitment thereafter, is understudied. In the current investigation, we compared MSCs from the umbilical cord blood (UCB), dental pulp (DP), and liposuction material (LS) on their ability to respond to activated neutrophils. Cytokine profiling (interleukin-1α [IL-1α], IL-2, IL-4, IL-6, IL-8, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], transforming growth factor-β [TGF-β]), cellular proliferation and osteogenic differentiation patterns were assessed. The results showed largely comparable cytokine profiles with higher TNF-α and IFN-γ levels in LSMSCs owing to their mature cellular phenotype. The viability and proliferation between LS/DP/UCB MSCs were comparable in the coculture group, while direct activation of MSCs with lipopolysaccharide (LPS) showed comparable proliferation with significant cell death in UCB MSCs and slightly higher cell death in the other two types of MSC. Furthermore, when MSCs post-neutrophil exposure were induced for osteogenic differentiation, though all the MSCs devoid of the sources differentiated, we observed rapid and significant turnover of DPMSCs positive of osteogenic markers rather than LS and UCB MSCs. We further observed a significant turnover of IL-1α and TGF-β at mRNA and cytokine levels, indicating the commitment of MSCs to differentiate through interacting with immunological cells or bacterial products like neutrophils or LPS, respectively. Taken together, these results suggest that MSCs have more or less similar cytokine responses devoid of their anatomical niche. They readily switch over from the cytokine responsive cell phenotype at the immunological microenvironment to differentiate and regenerate tissue in response to cellular signals.  相似文献   
94.
95.
Vibrio shiloi is the first and well-documented bacterium which causes coral bleaching, particularly, during summer, when seawater temperature is between 26 and 31°C. Coral bleaching is the disruption of the symbiotic association between coral hosts and their photosynthetic microalgae zooxanthellae. This is either due to lowered resistance in corals to infection or increased virulence of the bacterium at the higher sea surface temperature. The concentration of the oxygen and resulting oxygen radicals produced by the zooxanthellae during photosynthesis are highly toxic to bacteria, which also assist corals in resisting the infection. Hence, in this study we examined the effect of different temperatures on the activity of a novel extracellular SOD in V. shiloi. We also partially characterized the SOD and clearly confirmed that the extracellular SOD produced by V. shiloi is Mn–SOD type, as it was not inhibited by H2O2 or KCN. Performing chemical susceptibility killing assay, we confirmed that extracellular SOD may act as first line of defense for the bacteria against the reactive oxygen species. Since, increased activity of novel Mn–SOD at higher temperature, leads to the neutralization of radical toxicity and facilitates the survival of V. shiloi. Hence, the extracellular Mn–SOD may be considered as a virulence factor.  相似文献   
96.
97.
Diabetes-induced changes in glucose formation, intracellular and mitochondrial glutathione redox states as well as hydroxyl free radicals (HFR) generation have been investigated in rabbit kidney-cortex tubules. In contrast to renal tubules of control animals, diabetes-evoked increase in glucose formation in the presence of either aspartate+glycerol+octanoate or malate as gluconeogenic precursors (for about 50%) was accompanied by a diminished intracellular glutathione reduced form (GSH)/glutathione oxidised one (GSSG) ratio by about 30-40%, while the mitochondrial GSH/GSSG ratio was not altered. However, a relationship between the rate of gluconeogenesis and the intracellular glutathione redox state was maintained in renal tubules of both control and diabetic rabbits, as concluded from measurements in the presence of various gluconeogenic precursors. Moreover, diabetes resulted in both elevation of the glutathione reductase activity in rabbit kidney-cortex and acceleration of renal HFR generation (by about 2-fold). On the addition of melatonin, the hormone exhibiting antioxidative properties, the control values of HFR production were restored, suggesting that this compound might be beneficial during diabetes therapy. In view of the data, it seems likely that diabetes-induced increase in HFR formation in renal tubules might be responsible for a diminished intracellular glutathione redox state despite elevated glutathione reductase activity and accelerated rate of gluconeogenesis, providing glucose-6-phosphate for NADPH generation via pentose phosphate pathway.  相似文献   
98.
Reactive oxygen species (ROS) play a key role in chronic liver injury and fibrosis. Homologs of NADPH oxidases (NOXs) are major sources of ROS, but the exact role of the individual homologs in liver disease is unknown. Our goal was to determine the role of NOX4 in liver fibrosis induced by bile duct ligation (BDL) with the aid of the pharmacological inhibitor GKT137831, and genetic deletion of NOX4 in mice. GKT137831 was either applied for the full term of BDL (preventive arm) or started at 10 day postoperatively (therapeutic arm). Primary hepatic stellate cells (HSC) from control mice with and without BDL were analyzed and the effect of NOX4 inhibition on HSC activation was also studied. FasL or TNFα/actinomycin D-induced apoptosis was studied in wild-type and NOX4(-/-) hepatocytes. NOX4 was upregulated by a TGF-β/Smad3-dependent mechanism in HSC. Downregulation of NOX4 decreased ROS production and the activation of NOX4(-/-) HSC was attenuated. NOX4(-/-) hepatocytes were more resistant to FasL or TNFα/actinomycin D-induced apoptosis. Similarly, after pharmacological NOX4 inhibition, ROS production, the expression of fibrogenic markers, and hepatocyte apoptosis were reduced. NOX4 was expressed in human livers with stage 2-3 autoimmune hepatitis. Fibrosis was attenuated by the genetic deletion of NOX4. BDL mice gavaged with GKT137831 in the preventive or the therapeutic arm displayed less ROS production, significantly attenuated fibrosis, and decreased hepatocyte apoptosis. In conclusion, NOX4 plays a key role in liver fibrosis. GKT137831 is a potent inhibitor of fibrosis and hepatocyte apoptosis; therefore, it is a promising therapeutic agent for future translational studies.  相似文献   
99.
100.
During decoding, the ribosome selects the correct (cognate) aminoacyl-tRNA (aa-tRNA) from a large pool of incorrect aa-tRNAs through a two-stage mechanism. In the initial selection stage, aa-tRNA is delivered to the ribosome as part of a ternary complex with elongation factor EF-Tu and GTP. Interactions between codon and anticodon lead to activation of the GTPase domain of EF-Tu and GTP hydrolysis. Then, in the proofreading stage, aa-tRNA is released from EF-Tu and either moves fully into the A/A site (a step termed “accommodation”) or dissociates from the ribosome. Cognate codon-anticodon pairing not only stabilizes aa-tRNA at both stages of decoding but also stimulates GTP hydrolysis and accommodation, allowing the process to be both accurate and fast. In previous work, we isolated a number of ribosomal ambiguity (ram) mutations in 16S rRNA, implicating particular regions of the ribosome in the mechanism of decoding. Here, we analyze a representative subset of these mutations with respect to initial selection, proofreading, RF2-dependent termination, and overall miscoding in various contexts. We find that mutations that disrupt inter-subunit bridge B8 increase miscoding in a general way, causing defects in both initial selection and proofreading. Mutations in or near the A site behave differently, increasing miscoding in a codon-anticodon-dependent manner. These latter mutations may create spurious favorable interactions in the A site for certain near-cognate aa-tRNAs, providing an explanation for their context-dependent phenotypes in the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号