首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   26篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   3篇
  2016年   17篇
  2015年   14篇
  2014年   24篇
  2013年   29篇
  2012年   28篇
  2011年   22篇
  2010年   13篇
  2009年   17篇
  2008年   16篇
  2007年   15篇
  2006年   13篇
  2005年   12篇
  2004年   11篇
  2003年   21篇
  2002年   16篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有339条查询结果,搜索用时 93 毫秒
181.
Nascent proteins emerge out of ribosomes through an exit tunnel, which was assumed to be a firmly built passive path. Recent biochemical results, however, indicate that the tunnel plays an active role in sequence-specific gating of nascent chains and in responding to cellular signals. Consistently, modulation of the tunnel shape, caused by the binding of the semi-synthetic macrolide troleandomycin to the large ribosomal subunit from Deinococcus radiodurans, was revealed crystallographically. The results provide insights into the tunnel dynamics at high resolution. Here we show that, in addition to the typical steric blockage of the ribosomal tunnel by macrolides, troleandomycin induces a conformational rearrangement in a wall constituent, protein L22, flipping the tip of its highly conserved beta-hairpin across the tunnel. On the basis of mutations that alleviate elongation arrest, the tunnel motion could be correlated with sequence discrimination and gating, suggesting that specific arrest motifs within nascent chain sequences may induce a similar gating mechanism.  相似文献   
182.
Ribosomes, the universal cellular organelles catalyzing the translation of genetic code into proteins, are protein/RNA assemblies, of a molecular weight 2.5 mega Daltons or higher. They are built of two subunits that associate for performing protein biosynthesis. The large subunit creates the peptide bond and provides the path for emerging proteins. The small has key roles in initiating the process and controlling its fidelity. Crystallographic studies on complexes of the small and the large eubacterial ribosomal subunits with substrate analogs, antibiotics, and inhibitors confirmed that the ribosomal RNA governs most of its activities, and indicated that the main catalytic contribution of the ribosome is the precise positioning and alignment of its substrates, the tRNA molecules. A symmetry-related region of a significant size, containing about two hundred nucleotides, was revealed in all known structures of the large ribosomal subunit, despite the asymmetric nature of the ribosome. The symmetry rotation axis, identified in the middle of the peptide-bond formation site, coincides with the bond connecting the tRNA double-helical features with its single-stranded 3' end, which is the moiety carrying the amino acids. This thus implies sovereign movements of tRNA features and suggests that tRNA translocation involves a rotatory motion within the ribosomal active site. This motion is guided and anchored by ribosomal nucleotides belonging to the active site walls, and results in geometry suitable for peptide-bond formation with no significant rearrangements. The sole geometrical requirement for this proposed mechanism is that the initial P-site tRNA adopts the flipped orientation. The rotatory motion is the major component of unified machinery for peptide-bond formation, translocation, and nascent protein progression, since its spiral nature ensures the entrance of the nascent peptide into the ribosomal exit tunnel. This tunnel, assumed to be a passive path for the growing chains, was found to be involved dynamically in gating and discrimination.  相似文献   
183.
Lyophilized unilamellar liposomes (ULV), the dosage form of choice for shelf-life, revert upon reconstitution to the larger multilamellar liposomes (MLV), which is detrimental to the many carrier-mediated therapies that require small particles. High doses of sugars such as trehalose, sucrose and others, included in the original formulations for cryoprotection, were shown to prevent the conversion to MLV. In this study we set out to test whether hyaluronan (HA), the surface-bound ligand in our previously developed targeted bioadhesive liposomes (BAL), can also act as a cryoprotectant. The studies included structural and physicochemical characterization of original and reconstituted hyaluronan-ULV (HA-ULV). For each HA-ULV, similar regular ULV (RL-ULV) served as controls. Four properties were tested: particle size, zeta potential, encapsulation efficiency and half-life of drug release (tau(1/2)), for three drugs-chloramphenicol (CAM), vinblastine (VIN) and mitomycin C (MMC). Encapsulation efficiencies of the original systems were quite alike for similar RL-ULV and HA-ULV ranging from 25% to 70%. All systems acted as sustained-release drug depots, tau(1/2) ranging from 1.3 to 5.3 days. Drug species and lipid composition were the major determinants of encapsulation and release magnitudes. By all tests, as anticipated, lyophilization generated significant changes in the reconstituted RL-ULV: 17-fold increase in diameter; tripling of zeta potential; 25-60% drop in encapsulation efficiencies; 25-30% decrease in tau(1/2). In contrast, the reconstituted HA-ULV retained the same dimensions, zeta potentials, encapsulation efficiencies and tau(1/2) of the original systems. These data clearly show HA to be a cryoprotectant, adding another clinically relevant advantage to HA-BAL. We propose that, like the sugars, HA cryoprotects by providing substitute structure-stabilizing H-bonds.  相似文献   
184.
185.
Ceramide signaling in fenretinide-induced endothelial cell apoptosis   总被引:6,自引:0,他引:6  
Stress stimuli can mediate apoptosis by generation of the lipid second messenger, ceramide. Herein we investigate the molecular mechanism of ceramide signaling in endothelial apoptosis induced by fenretinide (N-(4-hydroxyphenyl)retinamide (4-HPR)). 4-HPR, a synthetic derivative of retinoic acid that induces ceramide in tumor cell lines, has been shown to have antiangiogenic effects, but the molecular mechanism of these is largely unknown. We report that 4-HPR was cytotoxic to endothelial cells (50% cytotoxicity at 2.4 microm, 90% at 5.36 microm) and induced a caspase-dependent endothelial apoptosis. 4-HPR (5 microm) increased ceramide levels in endothelial cells 5.3-fold, and the increase in ceramide was required to achieve the apoptotic effect of 4-HPR. The 4-HPR-induced increase in ceramide was suppressed by inhibitors of ceramide synthesis, fumonisin B(1), myriocin, and l-cycloserine, and 4-HPR transiently activated serine palmitoyltransferase, demonstrating that 4-HPR induced de novo ceramide synthesis. Sphingomyelin levels were not altered by 4-HPR, and desipramine had no effect on ceramide level, suggesting that sphingomyelinase did not contribute to the 4-HPR-induced ceramide increase. Finally, the pancaspase inhibitor, t-butyloxycarbonyl-aspartyl[O-methyl]-fluoromethyl ketone, suppressed 4-HPR-mediated apoptosis but not ceramide accumulation, suggesting that ceramide is upstream of caspases. Our results provide the first evidence that increased ceramide biosynthesis is required for 4-HPR-induced endothelial apoptosis and present a molecular mechanism for its antiangiogenic effects.  相似文献   
186.
Type I chaperonins are fundamental protein folding machineries that function in eubacteria, mitochondria and chloroplasts. Eubacteria and mitochondria contain chaperonin systems comprised of homo-oligomeric chaperonin 60 tetradecamers and co-chaperonin 10 heptamers. In contrast, the chloroplast chaperonins are heterooligomeric tetradecamers that are composed of two subunit types, alpha and beta. Additionally, chloroplasts contain two structurally distinct co-chaperonins. One, ch-cpn10, is probably similar to the mitochondrial and bacterial co-chaperonins, and is composed of 10 kDa subunits. The other, termed ch-cpn20 is composed of two cpn10-like domains that are held together by a short linker. While the oligomeric structure of ch-cpn10 remains to be elucidated, it was previously suggested that ch-cpn20 forms tetramers in solution, and that this is the functional oligomer. In the present study, we investigated the properties of purified ch-cpn10 and ch-cpn20. Using bifunctional cross-linking reagents, gel filtration chromatography and analytical ultracentrifugation, we show that ch-cpn10 is a heptamer in solution. In contrast, ch-cpn20 forms multiple oligomers that are in dynamic equilibrium with each other and cover a broad spectrum of molecular weights in a concentration-dependent manner. However, upon association with GroEL, only one type of co-chaperonin-GroEL complex is formed.  相似文献   
187.
MOTIVATION: DNA microarrays have recently been used for the purpose of monitoring expression levels of thousands of genes simultaneously and identifying those genes that are differentially expressed. The probability that a false identification (type I error) is committed can increase sharply when the number of tested genes gets large. Correlation between the test statistics attributed to gene co-regulation and dependency in the measurement errors of the gene expression levels further complicates the problem. In this paper we address this very large multiplicity problem by adopting the false discovery rate (FDR) controlling approach. In order to address the dependency problem, we present three resampling-based FDR controlling procedures, that account for the test statistics distribution, and compare their performance to that of the na?ve application of the linear step-up procedure in Benjamini and Hochberg (1995). The procedures are studied using simulated microarray data, and their performance is examined relative to their ease of implementation. RESULTS: Comparative simulation analysis shows that all four FDR controlling procedures control the FDR at the desired level, and retain substantially more power then the family-wise error rate controlling procedures. In terms of power, using resampling of the marginal distribution of each test statistics substantially improves the performance over the na?ve one. The highest power is achieved, at the expense of a more sophisticated algorithm, by the resampling-based procedures that resample the joint distribution of the test statistics and estimate the level of FDR control. AVAILABILITY: An R program that adjusts p-values using FDR controlling procedures is freely available over the Internet at www.math.tau.ac.il/~ybenja.  相似文献   
188.
189.
Bdellovibrio and like organisms (BALOs) are largely distributed in soils and in water bodies obligate predators of gram-negative bacteria that can affect bacterial communities. Potential applications of BALOs include biomass reduction, their use against pathogenic bacteria in agriculture, and in medicine as an alternative against antibiotic-resistant pathogens. Such different environments and uses mean that BALOs should be active under a range of viscosities. In this study, the predatory behaviour of two strains of the periplasmic predator B. bacteriovorus and of the epibiotic predator Micavibrio aeruginosavorus was examined in viscous polyvinylpyrrolidone (PVP) solutions at 28 and at 37°C, using fluorescent markers and plate counts to track predator growth and prey decay. We found that at high viscosities, although swimming speed was largely decreased, the three predators reduced prey to levels similar to those of non-viscous suspensions, albeit with short delays. Prey motility and clumping did not affect the outcome. Strikingly, under low initial predator concentrations, predation dynamics were faster with increasing viscosity, an effect that dissipated with increasing predator concentrations. Changes in swimming patterns and in futile predator–predator encounters with viscosity, as revealed by path analysis under changing viscosities, along with possible PVP-mediated crowding effects, may explain the observed phenomena.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号