首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   47篇
  国内免费   1篇
  466篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   6篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   20篇
  2015年   16篇
  2014年   30篇
  2013年   39篇
  2012年   35篇
  2011年   31篇
  2010年   18篇
  2009年   21篇
  2008年   22篇
  2007年   20篇
  2006年   22篇
  2005年   16篇
  2004年   17篇
  2003年   24篇
  2002年   17篇
  2001年   5篇
  2000年   2篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   7篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有466条查询结果,搜索用时 0 毫秒
371.
A fundamental challenge in the study of learning and memory is to understand the role of existing knowledge in the encoding and retrieval of new episodic information. The importance of prior knowledge in memory is demonstrated in the congruency effect—the robust finding wherein participants display better memory for items that are compatible, rather than incompatible, with their pre-existing semantic knowledge. Despite its robustness, the mechanism underlying this effect is not well understood. In four studies, we provide evidence that demonstrates the privileged explanatory power of the elaboration-integration account over alternative hypotheses. Furthermore, we question the implicit assumption that the congruency effect pertains to the truthfulness/sensibility of a subject-predicate proposition, and show that congruency is a function of semantic relatedness between item and context words.  相似文献   
372.
373.
We demonstrate that the levels of native as well as transfected prion protein (PrP) are lowered in various cell lines exposed to phosphorothioate oligodeoxynucleotides (PS-DNA) and can be rapidly reverted to their normal amounts by removal of PS-DNA. This transient modulation was independent of the glycosylation state of PrP, and in addition, all three PrP glycoforms were susceptible to PS-DNA treatment. Deletion of the N-terminal domain (amino acids 23-99), but not of the other domains of PrP, abrogated its PS-DNA-mediated down-regulation. PrP versions localized in the mitochondria, cytoplasm, or nucleus were not modulated by PS-DNA, indicating that PrP surface exposure is required for executing this effect. Proteins that in their native forms were not responsive to PS-DNA, such as thymocyte antigen 1 (Thy1), Doppel protein (Dpl), green fluorescent protein (GFP), and cyan fluorescent protein (CFP), became susceptible to PS-DNA-mediated down-regulation following introduction of the N terminus of PrP into their sequence. These observations demonstrate the essential role of the N-terminal domain for promoting oligonucleotide-mediated reduction of the PrP level and suggest that transient treatment of cultured cells with PS-DNA may provide a general method for targeted modulation of the levels of desired surface proteins in a conditional and reversible manner.  相似文献   
374.
This work was designed to determine the role of the vascular endothelial growth factor A (VEGF) isoforms during early neuroepithelial development in the mammalian central nervous system (CNS), specifically in the forebrain. An emerging model of interdependence between neural and vascular systems includes VEGF, with its dual roles as a potent angiogenesis factor and neural regulator. Although a number of studies have implicated VEGF in CNS development, little is known about the role that the different VEGF isoforms play in early neurogenesis. We used a mouse model of disrupted VEGF isoform expression that eliminates the predominant brain isoform, VEGF164, and expresses only the diffusible form, VEGF120. We tested the hypothesis that VEGF164 plays a key role in controlling neural precursor populations in developing cortex. We used microarray analysis to compare gene expression differences between wild type and VEGF120 mice at E9.5, the primitive stem cell stage of the neuroepithelium. We quantified changes in PHH3-positive nuclei, neural stem cell markers (Pax6 and nestin) and the Tbr2-positive intermediate progenitors at E11.5 when the neural precursor population is expanding rapidly. Absence of VEGF164 (and VEGF188) leads to reduced proliferation without an apparent effect on the number of Tbr2-positive cells. There is a corresponding reduction in the number of mitotic spindles that are oriented parallel to the ventricular surface relative to those with a vertical or oblique angle. These results support a role for the VEGF isoforms in supporting the neural precursor population of the early neuroepithelium.  相似文献   
375.
The tuftelin protein isoforms undergo post‐translation modifications, and are ubiquitously expressed in various tissues in embryos, adults, and tumors. Developmental and pathological studies suggested an apparent correlation between oxygen deprivation and tuftelin expression. The aim of the study was therefore to investigate the effect of a pathological insult (hypoxia) and a physiological growth factor (NGF), which antagonistically regulate HIF1 expression, on tuftelin expression using the neuronal PC12 cell model. In the present study, we first demonstrated the expression of tuftelin in PC12 cells, providing an experimental system to investigate the pathophysiological role of tuftelin. Furthermore, we demonstrated the induction of tuftelin during hypoxia by oxygen deprivation and during chemical hypoxia by cobalt chloride. Down‐regulation of HIF1α mRNA blocked hypoxia‐induced HIF1α expression, and reduced by 89% hypoxia‐induced tuftelin expression. In mice, intraperitoneal injection of cobalt chloride significantly induced tuftelin mRNA and protein expression in the brain. During NGF‐mediated PC12 differentiation, tuftelin expression was significantly induced in correlation with neurite outgrowth. This induction was partially blocked by K252a, a selective antagonist of the NGF receptor TrkA, indicating the involvement of the TrkA‐signaling pathways in tuftelin induction by NGF. Revealing the physiological role of tuftelin will clarify mechanisms related to the “hypoxic genome,” and NGF‐induced neurotrophic and angiogenic effects. J. Cell. Physiol. 226: 165–172, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
376.
The inflammatory response in the injured spinal cord, an immune privileged site, has been mainly associated with the poor prognosis. However, recent data demonstrated that, in fact, some leukocytes, namely monocytes, are pivotal for repair due to their alternative anti-inflammatory phenotype. Given the pro-inflammatory milieu within the traumatized spinal cord, known to skew monocytes towards a classical phenotype, a pertinent question is how parenchymal-invading monocytes acquire resolving properties essential for healing, under such unfavorable conditions. In light of the spatial association between resolving (interleukin (IL)-10 producing) monocytes and the glial scar matrix chondroitin sulfate proteoglycan (CSPG), in this study we examined the mutual relationship between these two components. By inhibiting the de novo production of CSPG following spinal cord injury, we demonstrated that this extracellular matrix, mainly known for its ability to inhibit axonal growth, serves as a critical template skewing the entering monocytes towards the resolving phenotype. In vitro cell culture studies demonstrated that this matrix alone is sufficient to induce such monocyte polarization. Reciprocal conditional ablation of the monocyte-derived macrophages concentrated at the lesion margins, using diphtheria toxin, revealed that these cells have scar matrix-resolving properties. Replenishment of monocytic cell populations to the ablated mice demonstrated that this extracellular remodeling ability of the infiltrating monocytes requires their expression of the matrix-degrading enzyme, matrix metalloproteinase 13 (MMP-13), a property that was found here to be crucial for functional recovery. Altogether, this study demonstrates that the glial scar-matrix, a known obstacle to regeneration, is a critical component skewing the encountering monocytes towards a resolving phenotype. In an apparent feedback loop, monocytes were found to regulate scar resolution. This cross-regulation between the glial scar and monocytes primes the resolution of this interim phase of spinal cord repair, thereby providing a fundamental platform for the dynamic healing response.  相似文献   
377.
As species richness varies along the tree of life, there is a great interest in identifying factors that affect the rates by which lineages speciate or go extinct. To this end, theoretical biologists have developed a suite of phylogenetic comparative methods that aim to identify where shifts in diversification rates had occurred along a phylogeny and whether they are associated with some traits. Using these methods, numerous studies have predicted that speciation and extinction rates vary across the tree of life. In this study, we show that asymmetric rates of sequence evolution lead to systematic biases in the inferred phylogeny, which in turn lead to erroneous inferences regarding lineage diversification patterns. The results demonstrate that as the asymmetry in sequence evolution rates increases, so does the tendency to select more complicated models that include the possibility of diversification rate shifts. These results thus suggest that any inference regarding shifts in diversification pattern should be treated with great caution, at least until any biases regarding the molecular substitution rate have been ruled out.  相似文献   
378.
Accelerating microbial iron cycling is an innovative environmentally responsible strategy for mine remediation. In the present study, we extend the application of microbial iron cycling in environmental remediation, to include biocementation for the aggregation and stabilization of mine wastes. Microbial iron reduction was promoted monthly for 10 months in crushed canga (a by-product from iron ore mining, dominated by crystalline iron oxides) in 1 m3 containers. Ferrous iron concentrations reached 445 ppm in treatments and diverse lineages of the candidate phyla radiation dominated pore waters, implicating them in fermentation and/or metal cycling in this system. After a 6-month evaporation period, iron-rich cements had formed between grains and 20-cm aggregates were recoverable from treatments throughout the 1-m depth profile, while material from untreated and water-only controls remained unconsolidated. Canga-adapted plants seeded into one of the treatments germinated and grew well. Therefore, application of this geobiotechnology offers promise for stabilization of mine wastes, as well as re-formation of surface crusts that underpin unique and threatened plant ecosystems in iron ore regions.  相似文献   
379.

Rationale

Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity.

Objectives

We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU).

Methods

Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR). This study includes data from both a training cohort (UK) and an independent validation cohort (Sweden). A linear discriminant statistical model was employed to construct a diagnostic microRNA signature.

Results

A panel of known and novel microRNAs were detectable in the blood of patients with sepsis. After qRT-PCR validation, microRNA miR-150 and miR-4772-5p-iso were able to discriminate between patients who have systemic inflammatory response syndrome and patients with sepsis. This finding was also validated in independent cohort with an average diagnostic accuracy of 86%. Fractionating the cellular components of blood reveals miR-4772-5p-iso is expressed differentially in monocytes. Functional experiments using primary human monocytes demonstrate that it expressed in response to TLR ligation.

Conclusions

Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.  相似文献   
380.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号