首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   431篇
  免费   26篇
  457篇
  2023年   1篇
  2022年   9篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   11篇
  2016年   16篇
  2015年   12篇
  2014年   19篇
  2013年   23篇
  2012年   29篇
  2011年   36篇
  2010年   16篇
  2009年   21篇
  2008年   33篇
  2007年   33篇
  2006年   15篇
  2005年   22篇
  2004年   26篇
  2003年   23篇
  2002年   25篇
  2001年   11篇
  2000年   3篇
  1999年   1篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1978年   1篇
  1973年   1篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有457条查询结果,搜索用时 15 毫秒
121.
Anaplastic Lymphoma Kinase (Alk) is a Receptor Tyrosine Kinase (RTK) activated in several cancers, but with largely unknown physiological functions. We report two unexpected roles for the Drosophila ortholog dAlk, in body size determination and associative learning. Remarkably, reducing neuronal dAlk activity increased body size and enhanced associative learning, suggesting that its activation is inhibitory in both processes. Consistently, dAlk activation reduced body size and caused learning deficits resembling phenotypes of null mutations in dNf1, the Ras GTPase Activating Protein-encoding conserved ortholog of the Neurofibromatosis type 1 (NF1) disease gene. We show that dAlk and dNf1 co-localize extensively and interact functionally in the nervous system. Importantly, genetic or pharmacological inhibition of dAlk rescued the reduced body size, adult learning deficits, and Extracellular-Regulated-Kinase (ERK) overactivation dNf1 mutant phenotypes. These results identify dAlk as an upstream activator of dNf1-regulated Ras signaling responsible for several dNf1 defects, and they implicate human Alk as a potential therapeutic target in NF1.  相似文献   
122.
This study was designed to evaluate the oxidative stress status of erythrocytes and its association with cellular ultrastructure and membrane proteome modifications in patients with end stage renal disease (ESRD) on hemodialysis (HD). For that purpose, we studied red blood cells' (RBCs) modifications in twelve non-diabetic ESRD patients that were responsive in erythropoietin therapy. Intracellular ROS levels were measured by fluorometry, RBCs ultra-structure was examined by electron microscopy, while the membrane proteome by electrophoresis and immunoblotting. Compared to the healthy subjects, the uremic RBCs exhibited significantly increased ROS accumulation. Dialysis partially ameliorated the basal ROS levels but triggered cellular sensitivity to exogenous oxidative stimuli. Common membrane modifications involved loss, aggregation, fragmentation and carbonylation of critical components as well as over-expression of stress markers. HD significantly contributed to membrane proteome remodeling, especially for aquaporin-1, peroxiredoxin-2 and ubiquitinated proteins. The intracellular redox status and the closely associated membrane modifications seemed to be related to membrane instability, loss of surface area through vesiculation, echinocytosis and stomatocytosis. Our data evinced a network of interactions among the uremic toxins, the RBCs membrane composition and the cellular shape modifications in ESRD, which is developed around a core of oxidative provocations and cellular responses.  相似文献   
123.

Background

We have showed that secretory Apolipoprotein J/Clusterin (sCLU) is down-regulated in senescent, stressed or diseased red blood cells (RBCs). It was hypothesized that sCLU loss relates to RBCs vesiculation, a mechanism that removes erythrocyte membrane patches containing defective or potentially harmful components.

Methodology/Principal Findings

To investigate this issue we employed a combination of biochemical and microscopical approaches in freshly prepared RBCs or RBCs stored under standard blood bank conditions, an in vitro model system of cellular aging. We found that sCLU is effectively exocytosed in vivo during membrane vesiculation of freshly prepared RBCs. In support, the RBCs'' sCLU content was progressively reduced during RBCs ex vivo maturation and senescence under cold storage due to its selective exocytosis in membrane vesicles. A range of typical vesicular components, also involved in RBCs senescence, like Band 3, CD59, hemoglobin and carbonylated membrane proteins were found to physically interact with sCLU.

Conclusions/Significance

The maturation of RBCs is associated with a progressive loss of sCLU. We propose that sCLU is functionally involved in the disposal of oxidized/defected material through RBCs vesiculation. This process most probably takes place through sCLU interaction with RBCs membrane proteins that are implicit vesicular components. Therefore, sCLU represents a pro-survival factor acting for the postponement of the untimely clearance of RBCs.  相似文献   
124.

The Eastern Mediterranean Sea hosts several deep hypersaline anoxic basins (DHABs) such as the Bannock, L'Atalante, Discovery, and Urania which, due to strong salinity gradients, have a limited exchange with the overlying seawater. In the present study, a series of environmental variables associated with the origin and quality of organic matter were thoroughly investigated in an attempt to understand the function of these unique ecosystems. The redox potential of sediments collected from the brines as well as from reference sites varied from ?136 to 543 mV and salinity varied from 38 to 380 psu. Principal component analysis of chemical characteristics, including salinity, redox potential, organic carbon and nitrogen content, and C/N ratio grouped the sediments into two major clusters according to their redox state. Aliphatic hydrocarbon analysis revealed that the organic matter in the DHABs was predominantly of terrestrial origin but there was also evidence for petroleum inputs and for organic matter of phototrophic origin. Phospholipid linked fatty acids (PLFA) which were employed to assess the composition of microbial communities were found in greater abundance in stations situated inside the anoxic basins providing also strong evidence for the presence of methanotrophs and sulfate reducers. These results may represent an enhanced preservation of organic matter and an accumulation of microorganisms in these extreme environments. Heterogeneity in microbial community fatty acid profiles was documented between the anoxic sediments and the oxic and suboxic stations. However there were no significant correlations between PLFA and organic matter parameters. Redox conditions appear to influence microbial community composition, highlighting the role of the redox state as a regulator of organic matter preservation and microbial community accumulations in these ancient hypersaline anoxic lakes.  相似文献   
125.
A major pathway for bacterial preprotein translocation is provided by the Sec-dependent preprotein translocation pathway. Proteins destined for Sec-dependent translocation are synthesized as preproteins with an N-terminal signal peptide, which targets them to the SecYEG translocase channel. The driving force for the translocation reaction is provided by the peripheral membrane ATPase SecA, which couples the hydrolysis of ATP to the stepwise transport of unfolded preproteins across the bacterial membrane. Since SecA is essential, highly conserved among bacterial species, and has no close human homologues, it represents a promising target for antibacterial chemotherapy. However, high-throughput screening (HTS) campaigns to identify SecA inhibitors are hampered by the low intrinsic ATPase activity of SecA and the requirement of hydrophobic membranes for measuring the membrane or translocation ATPase activity of SecA. To address this issue, we have developed a colorimetric high-throughput screening assay in a 384-well format, employing an Escherichia coli (E. coli) SecA mutant with elevated intrinsic ATPase activity. The assay was applied for screening of a chemical library consisting of ∼27,000 compounds and proved to be highly reliable (average Z′ factor of 0.89). In conclusion, a robust HTS assay has been established that will facilitate the search for novel SecA inhibitors.  相似文献   
126.
KCNQ/Kv7 channels conduct voltage‐dependent outward potassium currents that potently decrease neuronal excitability. Heterozygous inherited mutations in their principle subunits Kv7.2/KCNQ2 and Kv7.3/KCNQ3 cause benign familial neonatal epilepsy whereas patients with de novo heterozygous Kv7.2 mutations are associated with early‐onset epileptic encephalopathy and neurodevelopmental disorders characterized by intellectual disability, developmental delay and autism. However, the role of Kv7.2‐containing Kv7 channels in behaviors especially autism‐associated behaviors has not been described. Because pathogenic Kv7.2 mutations in patients are typically heterozygous loss‐of‐function mutations, we investigated the contributions of Kv7.2 to exploratory, social, repetitive and compulsive‐like behaviors by behavioral phenotyping of both male and female KCNQ2+/? mice that were heterozygous null for the KCNQ2 gene. Compared with their wild‐type littermates, male and female KCNQ2+/? mice displayed increased locomotor activity in their home cage during the light phase but not the dark phase and showed no difference in motor coordination, suggesting hyperactivity during the inactive light phase. In the dark phase, KCNQ2+/? group showed enhanced exploratory behaviors, and repetitive grooming but decreased sociability with sex differences in the degree of these behaviors. While male KCNQ2+/? mice displayed enhanced compulsive‐like behavior and social dominance, female KCNQ2+/? mice did not. In addition to elevated seizure susceptibility, our findings together indicate that heterozygous loss of Kv7.2 induces behavioral abnormalities including autism‐associated behaviors such as reduced sociability and enhanced repetitive behaviors. Therefore, our study is the first to provide a tangible link between loss‐of‐function Kv7.2 mutations and the behavioral comorbidities of Kv7.2‐associated epilepsy.  相似文献   
127.
Eroglu E  Melis A 《Bioresource technology》2011,102(18):8403-8413
Photobiological hydrogen production has advanced significantly in recent years, and on the way to becoming a mature technology. A variety of photosynthetic and non-photosynthetic microorganisms, including unicellular green algae, cyanobacteria, anoxygenic photosynthetic bacteria, obligate anaerobic, and nitrogen-fixing bacteria are endowed with genes and proteins for H2-production. Enzymes, mechanisms, and the underlying biochemistry may vary among these systems; however, they are all promising catalysts in hydrogen production. Integration of hydrogen production among these organisms and enzymatic systems is a recent concept and a rather interesting development in the field, as it may minimize feedstock utilization and lower the associated costs, while improving yields of hydrogen production. Photobioreactor development and genetic manipulation of the hydrogen-producing microorganisms is also outlined in this review, as these contribute to improvement in the yield of the respective processes.  相似文献   
128.
The torque-time curve patterns of concentric isokinetic knee extension in anterior cruciate ligament (ACL) deficient patients usually present mid-range irregularities associated with the level of anterior tibial translation. The purpose of this study was to compare the smoothness in isokinetic torque production between the ACL deficient and the healthy knee. Thirty ACL deficient soccer players performed bilaterally five trials of maximum concentric knee extension-flexion at 60 degrees /s on a Biodex dynamometer. The three middle trials (a total of six curves) were retained and submitted to further data processing. Maximum frequency values contained within the 90%, 95% and 99% level of the signal power were calculated for each extension and flexion curve. The frequency content of the ACL deficient side proved to be statistically higher compared to the intact side at all levels of the power spectrum. The percentage differences in the frequency content were 18.8%, 10.6% and 40.0% for knee extension, and 49.5%, 24.5% and 16.3% for knee flexion, for the respective power levels. This indicated higher oscillations and, therefore, more unstable mechanical output of the injured knee. An overall biological interpretation of the present results is based on the notion that disturbed motion is generally connected to poor level of joint functionality.  相似文献   
129.
Many populations of long‐distance migrants are declining and there is increasing evidence that declines may be caused by factors operating outside the breeding season. Among the four vulture species breeding in the western Palaearctic, the species showing the steepest population decline, the Egyptian Vulture Neophron percnopterus, is a long‐distance migrant wintering in Africa. However, the flyways and wintering areas of the species are only known for some populations, and without knowledge of where mortality occurs, effective conservation management is not possible. We tracked 19 juvenile Egyptian Vultures from the declining breeding population on the Balkan Peninsula between 2010 and 2014 to estimate survival and identify important migratory routes and wintering areas for this species. Mortality during the first autumn migration was high (monthly survival probability 0.75) but mortality during migration was exclusively associated with suboptimal navigation. All birds from western breeding areas and three birds from central and eastern breeding areas attempted to fly south over the Mediterranean Sea, but only one in 10 birds survived this route, probably due to stronger tailwind. All eight birds using the migratory route via Turkey and the Middle East successfully completed their first autumn migration. Of 14 individual and environmental variables examined to explain why juvenile birds did or did not successfully complete their first migration, the natal origin of the bird was the most influential. We speculate that in a declining population with fewer experienced adults, an increasing proportion of juvenile birds are forced to migrate without conspecific guidance, leading to high mortality as a consequence of following sub‐optimal migratory routes. Juvenile Egyptian Vultures wintered across a vast range of the Sahel and eastern Africa, and had large movement ranges with core use areas at intermediate elevations in savannah, cropland or desert. Two birds were shot in Africa, where several significant threats exist for vultures at continental scales. Given the broad distribution of the birds and threats, effective conservation in Africa will be challenging and will require long‐term investment. We recommend that in the short term, more efficient conservation could target narrow migration corridors in southern Turkey and the Middle East, and known congregation sites in African wintering areas.  相似文献   
130.
Due to the increasing prevalence of diabetes, finding therapeutic analogues for insulin has become an urgent issue. While many experimental studies have been performed towards this end, they have limited scope to examine all aspects of the effect of a mutation. Computational studies can help to overcome these limitations, however, relatively few studies that focus on insulin analogues have been performed to date. Here, we present a comprehensive computational study of insulin analogues—three mutant insulins that have been identified with hyperinsulinemia and three mutations on the critical B26 residue that exhibit similar binding affinity to the insulin receptor—using molecular dynamics simulations with the aim of predicting how mutations of insulin affect its activity, dynamics, energetics and conformations. The time evolution of the conformers is studied in long simulations. The probability density function and potential of mean force calculations are performed on each insulin analogue to unravel the effect of mutations on the dynamics and energetics of insulin activation. Our conformational study can decrypt the key features and molecular mechanisms that are responsible for an enhanced or reduced activity of an insulin analogue. We find two key results: 1) hyperinsulinemia may be due to the drastically reduced activity (and binding affinity) of the mutant insulins. 2) Y26BS and Y26BE are promising therapeutic candidates for insulin as they are more active than WT-insulin. The analysis in this work can be readily applied to any set of mutations on insulin to guide development of more effective therapeutic analogues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号