首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   22篇
  2022年   5篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   9篇
  2017年   5篇
  2016年   7篇
  2015年   9篇
  2014年   10篇
  2013年   12篇
  2012年   12篇
  2011年   15篇
  2010年   10篇
  2009年   7篇
  2008年   5篇
  2007年   11篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   10篇
  2002年   8篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1995年   4篇
  1992年   1篇
  1991年   1篇
  1989年   5篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
61.
Stress tolerance is a multigenic character and there are many stress responsive genes, which are stress specific. Although many of these have been cloned, their functional significance remains fragmentary. Hence it is important to identify the relevant stress genes involved in altering the metabolism for adaptation. Overexpression is one of the several approaches and Chlamydomonas is a suitable system to study the functional relevance of stress genes. Stress responses can only be assessed on prior exposure to sublethal induction stress. In this study the acclimation response of Chlamydomonas was assessed for different abiotic stresses using physiological screens like chlorophyll stability, membrane damage, cell viability, accumulation of free radicals, survival and recovery growth. We demonstrate that Chlamydomonas responds to diverse stresses and is a potential system to study the relevance of stress genes. The relevance of choline oxidase A (codA), a key enzyme in glycinebetaine biosynthesis, was examined by developing transformants expressing codA gene from Arthrobacter globiformis. Southern positive transformants showed enhanced accumulation of glycinebetaine. The transformants also showed enhanced growth under salinity, high light coupled with methylviologen-induced oxidative stress, high temperature and cold stress. However the transgenics were not tolerant to PEG-mediated simulated osmotic stress, LiCl, menadione and UV stress. Increased cell survival and decreased chlorophyll degradation in transformants under acclimated conditions further confirmed the relevance of codA in imparting stress tolerance. Our results indicated that the relevance of stress responsive genes can be efficiently validated for diverse abiotic stresses using Chlamydomonas system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. R. Hema and M. Senthil-Kumar contributed equally.  相似文献   
62.
We created transgenic mice with a bacterial artificial chromosome (BAC) containing the human COL6A1 gene. In high-copy and low-copy transgenic lines, we found correct temporal and spatial expression of COL6A1 mRNA, paralleling the expression of the murine Col6a1 gene in a panel of nine adult and four fetal organs. The only exception was the fetal lung, in which the transgene was expressed poorly compared with the endogenous gene. Expression of COL6A1 mRNA from the transgene was copy number-dependent, and the increased gene dosage correlated with increased production of collagen VI alpha 1 in skin and heart, as indicated by Western blotting and immunohistochemistry. COL6A1 maps to Chromosome 21 and this gene has been a candidate for contributing to cardiac defects and skin abnormalities in Down syndrome. The low-copy and high-copy COL6A1 transgenics were born and survived in normal Mendelian proportions, without cardiac malformations or altered skin histology. These data indicate that the major promoter and enhancer sequences regulating COL6A1 expression are present in this 167-kb BAC clone. The lack of a strong cardiac or skin phenotype in the COL6A1 BAC-transgenic mice suggests that the increased expression of this gene does not, by itself, account for these phenotypes in Down syndrome.  相似文献   
63.
The consumption of ethanol by pregnant women may cause neurological abnormalities, affecting learning and memory processes in children, and are collectively described as fetal alcohol spectrum disorders. However, the molecular mechanisms underlying these changes are still poorly understood. In our previous studies, we found that ethanol treatment of postnatal day 7 (P7) mice significantly enhances the anandamide levels but not the 2‐arachidonylglycerol (2‐AG) levels and induces widespread neurodegeneration, but the reason for the lack of significant effects of ethanol on the 2‐AG level is unknown. In this study, we examined developmental changes in diacylglycerol lipase‐α, β (DAGL‐α and β) and monoacylglycerol lipase (MAGL). We found that the levels of these proteins were significantly higher in adult brains compared to those detected early in brain development. Next, we examined the influence of P7 ethanol treatment on these enzymes, finding that it differentially altered the DAGL‐α protein and mRNA levels but consistently enhanced those of the DAGL‐β. Interestingly, the ethanol treatment enhanced MAGL protein and mRNA levels. Inhibition of MAGL with KML29 failed to induce neurodegeneration in P7 mice. Collectively, these findings suggest that ethanol significantly activates DAGL‐β and MAGL in the neonatal brain, resulting in no net change in 2‐AG levels.

  相似文献   

64.
The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type‐1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol‐induced activation of caspase 3. Together, these data demonstrate that ethanol‐induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis.

  相似文献   

65.
Bid is a proapopotic activator protein of the Bcl-2 family that plays a pivotal role in controlling mitochondrial outer membrane permeabilization during apoptosis. Here, we characterized the interaction of fluorescently labeled truncated Bid (tBid) with a mitochondria-like supported lipid bilayer at the single-molecule level. The proteins observed at the membrane exhibited a very wide range of mobility. Confocal images of the membrane displayed both diffraction-limited Gaussian spots and horizontal streaks, corresponding to immobile and mobile tBid species, respectively. We observed 1), fast-diffusing proteins corresponding to a loosely, probably electrostatically bound state; 2), slowly diffusing proteins, likely corresponding to a superficially inserted state; and 3), fully immobilized proteins, suggesting a fully inserted state. The stoichiometry of these proteins was determined by normalizing their fluorescence intensity by the brightness of a tBid monomer, measured separately using fluorescence fluctuation techniques. Strikingly, the immobile species were found to be mainly tetramers and higher, whereas the mobile species had on average a significantly lower stoichiometry. Taken together, these results show that as soluble Bid progresses toward a membrane-inserted state, it undergoes an oligomerization process similar to that observed for Bax.  相似文献   
66.
The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5′ → 3′ polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5′ → 3′ polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen.  相似文献   
67.
Therapeutic options for infections caused by gram-negative organisms expressing plasmid-mediated AmpC β-lactamases are limited because these organisms are usually resistant to all the β-lactam antibiotics, except for cefepime, cefpirome and the carbapenems. These organisms are a major concern in nosocomial infections and should therefore be monitored in surveillance studies. Hence, this study was aimed out to determine the prevalence of plasmid-mediated AmpC β-lactamases in E. coli and K. pneumoniae from a tertiary care in Bangalore. A total of 63 E. coli and 27 K. pneumoniae were collected from a tertiary care hospital in Bangalore from February 2008 to July 2008. The isolates with decreased susceptibility to cefoxitin were subjected to confirmation test with three dimensional extract tests. Minimum inhibitory concentrations (MICs) were determined by agar dilution method. Conjugation experiments, plasmid profiling and susceptibility testing were carried out to investigate the underlying mechanism of resistance. In our study, 52 (57.7%) isolates showed resistance to cefoxitin, the occurrence of AmpC was found to be 7.7% of the total isolates. Plasmid analysis of the selected isolates showed the presence of a single plasmid of 26 kb in E. coli and 2 Kb in K. pneumoniae. Plasmid-mediated AmpC β-lactamases were found in 11.1% of K. pneumoniae and in 6.3% of E. coli. Curing and conjugation experiments showed that resistance to cephamycins and cephalosporins was plasmid-mediated. Our study has demonstrated the occurrence of plasmid-mediated AmpC in E. coli and K. pneumoniae which illustrates the importance of molecular surveillance in tracking AmpC-producing strains at general hospitals and emphasizes the need for epidemiological monitoring.  相似文献   
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号