首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   39篇
  2023年   2篇
  2022年   10篇
  2021年   14篇
  2020年   7篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   26篇
  2015年   26篇
  2014年   22篇
  2013年   34篇
  2012年   39篇
  2011年   44篇
  2010年   22篇
  2009年   29篇
  2008年   39篇
  2007年   35篇
  2006年   38篇
  2005年   32篇
  2004年   32篇
  2003年   29篇
  2002年   22篇
  2001年   18篇
  2000年   10篇
  1999年   12篇
  1998年   11篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1974年   6篇
  1973年   2篇
  1971年   4篇
  1970年   3篇
  1967年   5篇
  1961年   1篇
  1950年   1篇
排序方式: 共有667条查询结果,搜索用时 15 毫秒
71.
We report here results of a single-cell Raman spectroscopy study of stress effects induced by silver nanoparticles in human mesenchymal stem cells (hMSCs). A high-sensitivity, high-resolution Raman Tweezers set-up has been used to monitor nanoparticle-induced biochemical changes in optically-trapped single cells. Our micro-Raman spectroscopic study reveals that hMSCs treated with silver nanoparticles undergo oxidative stress at doping levels in excess of 2 μg/ml, with results of a statistical analysis of Raman spectra suggesting that the induced stress becomes more dominant at nanoparticle concentration levels above 3 μg/ml.  相似文献   
72.
Boronic acids, known to bind diols, were screened to identify non-inflammatory cross-linkers for the preparation of glucose sensitive and insulin releasing agglomerates of liposomes (Agglomerated Vesicle Technology-AVT). This was done in order to select a suitable replacement for the previously used cross-linker, ConcanavalinA (ConA), a lectin known to have both toxic and inflammatory effects in vivo. Lead-compounds were selected from screens that involved testing for inflammatory potential, cytotoxicity and glucose-binding. These were then conjugated to insulin-encapsulating nanoparticles and agglomerated via sugar-boronate ester linkages to form AVTs. In vitro, the particles demonstrated triggered release of insulin upon exposure to physiologically relevant concentrations of glucose (10 mmoles/L-40 mmoles/L). The agglomerates were also shown to be responsive to multiple spikes in glucose levels over several hours, releasing insulin at a rate defined by the concentration of the glucose trigger.  相似文献   
73.

Purpose

To investigate the utility of a liposomal-iodinated nanoparticle contrast agent and computed tomography (CT) imaging for characterization of primary nodules in genetically engineered mouse models of non-small cell lung cancer.

Methods

Primary lung cancers with mutations in K-ras alone (KrasLA1) or in combination with p53 (LSL-KrasG12D;p53FL/FL) were generated. A liposomal-iodine contrast agent containing 120 mg Iodine/mL was administered systemically at a dose of 16 µl/gm body weight. Longitudinal micro-CT imaging with cardio-respiratory gating was performed pre-contrast and at 0 hr, day 3, and day 7 post-contrast administration. CT-derived nodule sizes were used to assess tumor growth. Signal attenuation was measured in individual nodules to study dynamic enhancement of lung nodules.

Results

A good correlation was seen between volume and diameter-based assessment of nodules (R2>0.8) for both lung cancer models. The LSL-KrasG12D;p53FL/FL model showed rapid growth as demonstrated by systemically higher volume changes compared to the lung nodules in KrasLA1 mice (p<0.05). Early phase imaging using the nanoparticle contrast agent enabled visualization of nodule blood supply. Delayed-phase imaging demonstrated significant differential signal enhancement in the lung nodules of LSL-KrasG12D;p53FL/FL mice compared to nodules in KrasLA1 mice (p<0.05) indicating higher uptake and accumulation of the nanoparticle contrast agent in rapidly growing nodules.

Conclusions

The nanoparticle iodinated contrast agent enabled visualization of blood supply to the nodules during the early-phase imaging. Delayed-phase imaging enabled characterization of slow growing and rapidly growing nodules based on signal enhancement. The use of this agent could facilitate early detection and diagnosis of pulmonary lesions as well as have implications on treatment response and monitoring.  相似文献   
74.
75.
T cells specific for proinsulin and islet-specific glucose-6-phosphatase catalytic subunit related protein (IGRP) induce diabetes in nonobese diabetic (NOD) mice. TCR transgenic mice with CD8(+) T cells specific for IGRP(206-214) (NOD8.3 mice) develop accelerated diabetes that requires CD4(+) T cell help. We previously showed that immune responses against proinsulin are necessary for IGRP(206-214)-specific CD8(+) T cells to expand. In this study, we show that diabetes development is dramatically reduced in NOD8.3 mice crossed to NOD mice tolerant to proinsulin (NOD-PI mice). This indicates that immunity to proinsulin is even required in the great majority of NOD8.3 mice that have a pre-existing repertoire of IGRP(206-214)-specific cells. However, protection from diabetes could be overcome by inducing islet inflammation either by a single dose of streptozotocin or anti-CD40 agonist Ab treatment. This suggests that islet inflammation can substitute for proinsulin-specific CD4(+) T cell help to activate IGRP(206-214)-specific T cells.  相似文献   
76.
The gastrin-releasing peptide receptor (GRPr) is overexpressed on various human tumors. The goal of our study was the synthesis of new 18F-labeled bombesin analogues for the PET imaging of GRPr expression in prostate tumor using a silicon-based one-step n. c. a. radiolabeling method. The silicon-containing building blocks were efficiently coupled to the N-terminus of the peptides via solid-phase synthesis. Radiolabeling of the obtained peptide precursors proceeded smoothly under acidic conditions (34-85% conversion). Using the di-tert-butyl silyl building block as labeling moiety, products containing a hydrolytically stable 18F-label were obtained. In in vitro receptor binding experiments 2-(4-(di-tert-butylfluorosilyl)phenyl)acetyl-Arg-Ava-Gln-Trp-Ala-Val-NMeGly-His-Sta-Leu-NH 2 ( 4b, IC50 = 22.9 nM) displayed a 12-fold higher binding affinity than 2-(4-(di-tert-butylfluorosilyl)phenyl)acetyl-Arg-Ava-Gln-Trp-Ala-Val-Gly-His(3Me)-Sta-Leu-NH2 ( 3b, IC50 = 276.6 nM), and 4b was therefore chosen for further evaluation. In vitro and ex vivo metabolite studies of [18F]4b showed no significant degradation. In biodistribution experiments, tumor uptake of [18F]4b was low and unspecific, whereas the GRPr-rich pancreas revealed a high and specific accumulation of the radiotracer. This study demonstrates the applicability of our silicon-based one-step n. c. a. radiolabeling method for the synthesis of new 18F-labeled bombesin derivatives. This innovative approach represents a general, straightforward access to radiolabeled peptides as PET imaging probes.  相似文献   
77.
78.
79.
80.
The DNA glycosylase hNEIL1 initiates the base excision repair (BER) of a diverse array of lesions, including ring-opened purines and saturated pyrimidines. Of these, the hydantoin lesions, guanidinohydantoin (Gh) and the two diastereomers of spiroiminodihydantoin (Sp1 and Sp2), have garnered much recent attention due to their unusual structures, high mutagenic potential, and detection in cells. In order to provide insight into the role of repair, the excision efficiency by hNEIL1 of these hydantoin lesions relative to other known substrates was determined. Most notably, quantitative examination of the substrate specificity with hNEIL1 revealed that the hydantoin lesions are excised much more efficiently (>100-fold faster) than the reported standard substrates thymine glycol (Tg) and 5-hydroxycytosine (5-OHC). Importantly, the glycosylase and beta,delta-lyase reactions are tightly coupled such that the rate of the lyase activity does not influence the observed substrate specificity. The activity of hNEIL1 is also influenced by the base pair partner of the lesion, with both Gh and Sp removal being more efficient when paired with T, G, or C than when paired with A. Notably, the most efficient removal is observed with the Gh or Sp paired in the unlikely physiological context with T; indeed, this may be a consequence of the unstable nature of base pairs with T. However, the facile removal via BER in promutagenic base pairs that are reasonably formed after replication (such as Gh.G) may be a factor that modulates the mutagenic profile of these lesions. In addition, hNEIL1 excises Sp1 faster than Sp2, indicating the enzyme can discriminate between the two diastereomers. This is the first time that a BER glycosylase has been shown to be able to preferentially excise one diastereomer of Sp. This may be a consequence of the architecture of the active site of hNEIL1 and the structural uniqueness of the Sp lesion. These results indicate that the hydantoin lesions are the best substrates identified thus far for hNEIL1 and suggest that repair of these lesions may be a critical function of the hNEIL1 enzyme in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号