首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   39篇
  667篇
  2023年   2篇
  2022年   10篇
  2021年   14篇
  2020年   7篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   26篇
  2015年   26篇
  2014年   22篇
  2013年   34篇
  2012年   39篇
  2011年   44篇
  2010年   22篇
  2009年   29篇
  2008年   39篇
  2007年   35篇
  2006年   38篇
  2005年   32篇
  2004年   32篇
  2003年   29篇
  2002年   22篇
  2001年   18篇
  2000年   10篇
  1999年   12篇
  1998年   11篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1974年   6篇
  1973年   2篇
  1971年   4篇
  1970年   3篇
  1967年   5篇
  1961年   1篇
  1950年   1篇
排序方式: 共有667条查询结果,搜索用时 15 毫秒
1.
2.
SMCT1 is a Na+-coupled monocarboxylate transporter expressed in a variety of tissues including kidney, thyroid, small intestine, colon, brain, and retina. We found recently that several non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the activity of SMCT1. Here we evaluated the effect of diclofenac, also a NSAID, on SMCT1. SMCT1 cDNA was expressed heterologously in the human retinal pigment epithelial cell lines HRPE and ARPE-19, the human mammary epithelial cell line MCF7, and in Xenopus laevis oocytes. Transport was monitored by substrate uptake and substrate-induced currents. Na+-dependent uptake/current was considered as SMCT1 activity. The effect of diclofenac was evaluated for specificity, dose-response, and influence on transport kinetics. To study the specificity of the diclofenac effect, we evaluated the influence of this NSAID on the activity of several other cloned transporters in mammalian cells under identical conditions. In contrast to several NSAIDs that inhibited SMCT1, diclofenac stimulated SMCT1 when expressed in HRPE and ARPE-19 cells. The stimulation was marked, ranging from 2- to 5-fold depending on the concentration of diclofenac. The stimulation was associated with an increase in the maximal velocity of the transport system as well as with an increase in substrate affinity. The observed effect on SMCT1 was selective because the activity of several other cloned transporters, when expressed in HRPE cells and studied under identical conditions, was not affected by diclofenac. Interestingly, the stimulatory effect on SMCT1 observed in HRPE and ARPE-19 cells was not evident in MCF7 cells nor in the X. laevis expression system, indicating that SMCT1 was not the direct target for diclofenac. The RPE-specific effect suggests that the target of diclofenac that mediates the stimulatory effect is expressed in RPE cells but not in MCF7 cells or in X. laevis oocytes. Since SMCT1 is a concentrative transporter for metabolically important compounds such as pyruvate, lactate, β-hydroxybutyrate, and nicotinate, the stimulation of its activity by diclofenac in RPE cells has biological and clinical significance.  相似文献   
3.
4.
Lipocalin 2, an iron-siderophore-binding protein, converts embryonic kidney mesenchyme to epithelia. We found that lipocalin 2 could also convert 4T1-Ras-transformed mesenchymal tumor cells to an epithelial phenotype, increase E-cadherin expression, and suppress cell invasiveness in vitro and tumor growth and lung metastases in vivo. The Ras-MAPK pathway mediated the epithelial to mesenchymal transition in part by increasing E-cadherin phosphorylation and degradation. Lipocalin 2 antagonized these effects at a point upstream of Raf activation. Lipocalin 2 action was enhanced by iron-siderophore. These data characterize lipocalin 2 as an epithelial inducer in Ras malignancy and a suppressor of metastasis.  相似文献   
5.
Precise DNA manipulation is critical for molecular biotechnology. Restriction enzyme-based approaches are limited by their requirement of specific enzyme sites. Restriction-free cloning has greatly improved the flexibility and speed of precise DNA assembly. Most of these approaches focus on DNA assembly rather than gene removal. Here we present a polymerase chain reaction (PCR)-based cloning method that allows removal of multiple gene segments from plasmids without using restriction enzymes and thermostable ligase. We demonstrate simultaneous removal of three gene segments from a plasmid. This approach could be beneficial to DNA library construction, genetic and protein engineering, and synthetic biology.  相似文献   
6.
The results presented in this paper show that lysis of human erythrocytes by linoleic acid is not caused by peroxidation of the fatty acid. Peroxidase, superoxide dismutase and scavengers of O 2 and OH had no effect on the lysis while catalase showed only marginal inhibition suggesting that O 2 , OH, O 2 and H2O2 do not play any direct role in hemolysis by linoleic acid. Generators of H2O2 inhibited the lysis completely and methemoglobin cells were more resistant to hemolysis by linoleic acid. The fatty acid did neither bind to nor fomed complex with red cell ghosts. Membrane oxidation of sulphydryl groups was also not involved in the lysis. Β-Carotene, retinol and bile salts enhanced the lysis, while, cholesterol but not cholesterol acetate, inhibited it. Taurocholate-pretreated cells were more susceptible to linoleic acid lysis. These observations suggested-that lysis by linoleic acid may be due to its detergent property.  相似文献   
7.
Camptothecin(s) production was examined in callus cultures derived from cotyledons of Nothapodytes foetida (Weigh) Sleumer. The calluses were grown on various combinations of Murashige and Skoog's basal media supplemented with auxins 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a-napthalene acetic acid (NAA) and indole-3-acetic acid (IAA) with 6-benzyl aminopurine (BA)/kinetin in different concentrations. The presence of camptothecin (CPT) and 9-methoxycamptothecin (9-OMeCPT) were analyzed by HPLC in relation to the media composition. Hyper production of CPT(1.306% on dry wt. basis) was observed with a combination of 2,4-D with BA and 2,4,5-T and NAA in 1-month-old callus.  相似文献   
8.
 Embryo axes of four accessions of chickpea (Cicer arietinum L.) were treated with Agrobacterium tumefaciens strains C58C1/GV2260 carrying the plasmid p35SGUSINT and EHA101 harbouring the plasmid pIBGUS. In both vectors the GUS gene is interrupted by an intron. After inoculation shoot formation was promoted on MS medium containing 0.5 mg/l BAP under a selection pressure of 100 mg/l kanamycin or 10 mg/l phosphinothricin, depending on the construct used for transformation. Expression of the chimeric GUS gene was confirmed by histochemical localization of GUS activity in regenerated shoots. Resistant shoots were grafted onto 5-day-old dark-grown seedlings, and mature plants could be recovered. T-DNA integration was confirmed by Southern analysis by random selection of putative transformants. The analysis of 4 plantlets of the T1 progeny revealed that none of them was GUS-positive, whereas the presence of the nptII gene could be detected by polymerase chain reaction. Received: 30 May 1997 / Revision received: 18 September 1997 / Accepted: 22 March 1999  相似文献   
9.
Nanostructured agglomerated vesicles encapsulating ciprofloxacin were evaluated for modulated delivery from the lungs in a healthy rabbit model. An aliphatic disulfide crosslinker, cleavable by cysteine was used to form cross-links between nanosized liposomes to form the agglomerates. The blood levels of drug after pulmonary instillation of free ciprofloxacin, liposomal ciprofloxacin, and the agglomerated liposomes encapsulating ciprofloxacin were evaluated. The liposomes and agglomerated vesicles showed extended release of drug into the blood over 24 hours, while the free ciprofloxacin did not. The agglomerates also allowed modulation of the drug release rate upon the introduction of cysteine into the lungs post-drug instillation; the cysteine-cleavable agglomerates accelerated their drug release rate, indicated by an increased level of drug in the blood. This technology holds promise for the post-administration modulation of antibiotic release, for the prevention and treatment of pulmonary and systemic infections.  相似文献   
10.
Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)—dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号