首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   979篇
  免费   88篇
  2023年   6篇
  2022年   5篇
  2021年   12篇
  2020年   8篇
  2019年   13篇
  2018年   16篇
  2017年   20篇
  2016年   18篇
  2015年   42篇
  2014年   35篇
  2013年   40篇
  2012年   57篇
  2011年   63篇
  2010年   35篇
  2009年   37篇
  2008年   46篇
  2007年   36篇
  2006年   53篇
  2005年   29篇
  2004年   42篇
  2003年   22篇
  2002年   25篇
  2001年   37篇
  2000年   43篇
  1999年   27篇
  1998年   20篇
  1997年   17篇
  1996年   12篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1992年   15篇
  1991年   21篇
  1990年   16篇
  1989年   9篇
  1988年   17篇
  1987年   8篇
  1986年   8篇
  1985年   11篇
  1984年   12篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   9篇
  1979年   13篇
  1975年   8篇
  1974年   12篇
  1973年   10篇
  1971年   6篇
  1969年   4篇
排序方式: 共有1067条查询结果,搜索用时 31 毫秒
71.
72.
We have identified a class of tau fragments inducing apoptosis in different cellular contexts, including a human teratocarcinoma-derived cell line (NT2 cells) representing committed human neuronal precursors. We have found a transition point inside the tau molecule beyond which the fragments lose their ability to induce apoptosis. This transition point is located around one of the putative caspase-3 cleavage sites. This is the only site that can be effectively used by caspase-3 in vitro, releasing the C-terminal 19 amino acids of tau. These results establish tau as a substrate for an apoptotic protease that turns tau itself into an effector of apoptosis. Accordingly, tau may be involved in a self-propagating process like what has been predicted for the pathogenesis of different neurodegenerative disorders.  相似文献   
73.
Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2—the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs.  相似文献   
74.
75.
Hypogean habitats are relatively simple exhibiting low diversity, low production and relative constancy of environmental factors, and are therefore appropriate for studying species coexistence in situ. We investigated the coexistence of two closely related, similarly sized orb-weaving spider species, Meta menardi and Metellina merianae, living syntopically in a Slovenian cave. We studied the annual dynamics of both species within a mixed population, and the impact of the ambient temperature, relative humidity, airflow and illumination, and compared their trophic niches to legacy data on prey of both species from 55 caves in Slovenia. We predicted a large overlap in their spatial niches and substantial differences in their temporal and trophic niches. We found that their spatial niches overlap greatly with few exceptions, mostly on the dates of notable meteorological changes in the cave but that their temporal niches differ significantly with r-strategy resembling epigean annual dynamic in M. merianae and a steady low abundance course in M. menardi within the cave. We also found that different predatory strategies significantly segregate their trophic niches: M. merianae uses a typical orb-weaving hunting strategy, while M. menardi combines web hunting with off-web hunting. Our findings suggest that both the diverse dynamics and trophic niches enable the coexistence of M. menardi and M. merianae despite their similar spatial niches, and that M. menardi, in particular, is optimally adapted to the epigean/hypogean ecotone.  相似文献   
76.
The contents of five fractions of energy-rich inorganic polyphosphates (polyPs), ATP, and H+-ATPase activity in the plasma membrane were determined in a low-activity cephalosporin C (cephC) producer Acremonium chrysogenum ATCC 11550 and selected highly efficient producer strain 26/8 grown on glucose or a synthetic medium providing for active synthesis of this antibiotic. It was shown that strain 26/8 on the synthetic medium produced 26-fold higher amount of cephC as compared with strain ATCC 11550. This was accompanied by a drastic decrease in the cell contents of ATP and the high-molecular-weight fractions polyP2, polyP3, and polyP5 with a concurrent increase in the low-molecular-weight fraction polyP1. These data suggest that polyPs are involved in the cephC synthesis as a source of energy. H+-ATPase activity insignificantly changed at both low and high levels of cephC production. This confirms the assumption that A. chrysogenum has other alternative antibiotic transporters in addition to cefT. The obtained results can be used for optimizing commercial-scale cephC biosynthesis.  相似文献   
77.
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Aberrantly glycosylated IgA1, with galactose (Gal)-deficient hinge region (HR) O-glycans, plays a pivotal role in the pathogenesis of the disease. It is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We have described the utility of activated ion-electron capture dissociation (AI-ECD) mass spectrometric analysis of IgA1 O-glycosylation. However, locating and characterizing the entire range of O-glycan attachment sites are analytically challenging due to the clustered serine and threonine residues in the HR of IgA1 heavy chain. To address this problem, we analyzed all glycoforms of the HR glycopeptides of a Gal-deficient IgA1 myeloma protein, mimicking the aberrant IgA1 in patients with IgAN, by use of a combination of IgA-specific proteases + trypsin and AI-ECD Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS/MS). The IgA-specific proteases provided a variety of IgA1 HR fragments that allowed unambiguous localization of all O-glycosylation sites in the six most abundant glycoforms, including the sites deficient in Gal. Additionally, this protocol was adapted for on-line liquid chromatography (LC)-AI-ECD MS/MS and LC-electron transfer dissociation MS/MS analysis. Our results thus represent a new clinically relevant approach that requires ECD/electron transfer dissociation-type fragmentation to define the molecular events leading to pathogenesis of a chronic kidney disease. Furthermore, this work offers generally applicable principles for the analysis of clustered sites of O-glycosylation.Glycosylation is one of the most common post-translational modifications of proteins. It is estimated that over half of mammalian proteins are glycosylated. Patients with several autoimmune disorders, chronic inflammatory diseases, and some infectious diseases exhibit abnormal glycosylation of serum immunoglobulins and other glycoproteins (15). The biological functions of these modifications in health and disease have become a significant area of interest in biomedical research (6). A subset of these glycoproteins has clustered sites of O-glycosylation with serine- and threonine-rich stretches within the amino acid sequence. Mucins, such as membrane-associated MUC1, are perhaps the best known family of proteins that are heavily O-glycosylated. Their altered expression and aberrant glycosylation have made them potential targets as biomarkers for early detection of cancer (7). Immunoglobulin A1 (IgA1)1 contains both O- and N-glycans (Fig. 1). Aberrant O-glycosylation of IgA1 is involved in the pathogenesis of IgA nephropathy (IgAN) and the closely related Henoch-Schönlein purpura nephritis (1, 8). Interestingly, the aberrantly glycosylated molecules, IgA1 in IgAN and MUC1 in cancer, are recognized by the immune system as neoepitopes as evidenced by formation of specific antibodies (911). Mucin-like bacterial surface proteins exhibit similar properties: the molecules have clustered bacterial O-glycans that mediate cellular adhesion, and blocking antibodies target these glycan-containing epitopes (12).Open in a separate windowFig. 1.IgA1 structural elements. IgA1 has N-linked glycans (filled circles) and O-linked glycans (open circles). The O-glycosylated sites are in the HR between the first and second constant region domains of the heavy chains. The HR is a Pro-rich segment with nine possible sites of O-glycan attachment. Underlined serine and threonine residues are usually glycosylated (31). Arrows show cleavage sites of trypsin and IgA-specific proteases.An O-glycosylated protein from a single source contains a population of variably O-glycosylated isoforms that show a distinct distribution of microheterogeneity of the O-glycan chains in terms of number, sites of attachment, and composition. Characterizing these clustered sites and understanding how the distributions change under different biological conditions or disease states are an analytical challenge. Enzymatic or chemical release of O-glycans is not selective. The heterogeneity, composition, and quantitative aspects of different O-glycan chains can be assessed and quantified by gas chromatographic and/or mass spectrometric techniques. However, the site-specific information and context of location and composition of adjacent chains are lost. Carbohydrate-specific lectin analysis of O-glycoproteins can provide information on glycan composition and comparative differences between samples, such as those from healthy controls and patients with various disease states. We have successfully demonstrated this in the analysis of IgA1 O-glycans from patients with IgAN versus healthy controls and disease controls (1315). This included proximal assessment of sites with galactose (Gal)-deficient O-glycans after digests with IgA-specific proteases (8). Several studies have demonstrated the value of mass spectrometry (MS) in identifying Gal-deficient IgA1 in patients with IgAN (1621), including our work that demonstrated the first direct localization of native sites of O-glycan chains in the hinge region (HR) of IgA1 by use of electron capture dissociation (ECD) (20, 22). ECD and the more recently developed electron transfer dissociation (ETD) have been used to identify sites of O-glycosylation on a variety of proteins (2326). This includes the analysis of sites of O-glycosylation by on-line LC-ECD/ETD MS/MS methods (23, 26, 27).IgAN is the most common primary glomerulonephritis worldwide (28) with about 20–40% of patients developing end stage renal failure. It is characterized by mesangial deposits of IgA1-containing immune complexes (28). The distinctive O-glycan chains of IgA1 molecules play a pivotal role in the pathogenesis of IgAN (1, 10, 1416, 29, 30). IgA1 contains an HR between the first and second heavy chain constant region domains with a high content of Ser, Thr, and Pro. This segment usually has three to five O-glycan chains per HR (31) (see Fig. 1). Aberrantly glycosylated IgA1, deficient in Gal in some of the O-glycans in the HR, in serum is rare in healthy individuals but is present at elevated levels in IgAN patients (13, 15). This distinctive IgA1 is in circulating immune complexes (8, 10, 15) and in the glomerular deposits of IgAN patients (16, 29). The absence of Gal apparently leads to the exposure of neoepitopes, including terminal and sialylated N-acetylgalactosamine (GalNAc) residues (9, 10). These epitopes are recognized by naturally occurring anti-glycan IgG or IgA1 antibodies and, consequently, circulating immune complexes are formed (9, 10, 15) that can deposit in the glomerular mesangia. To identify the pathogenic forms of IgA1, a thorough analysis of O-glycan microheterogeneity, including identification of the attachment sites, will be required.In this work, we demonstrate the complete analysis of O-glycoform microheterogeneity and site localization of the glycoforms in a naturally Gal-deficient IgA1 (Ale) myeloma protein that mimics the nephritogenic IgA1 in patients with IgAN (8, 9). Reversed phase (RP) LC FT-ICR MS successfully identified 10 distinct IgA1 HR fragments representing >99% of total IgA1. AI-ECD of the six most abundant IgA1 HR glycoforms (>95% of total IgA1) was accomplished with three distinct IgA-specific protease + trypsin digestions, identifying sites of Gal deficiency across four distinct IgA1 O-glycoforms. Based on the success of the ECD fragmentation of these IgA1 HR fragments, we adapted the analysis for on-line LC-MS/MS methods for both ECD and ETD. The variety of IgA1 HR proteolytic fragments provides a practical set of guidelines for the ECD/ETD analysis of clustered sites of O-glycosylation on this and other proteins. These results also provide insight into the order of attachment of the O-glycans in the IgA1 HR.  相似文献   
78.
Acceleration of flowering would be beneficial for breeding trees with a long juvenile phase; conversely, inhibition of flowering would prevent the spread of transgenes from the genetically modified trees. We have previously isolated and characterized several MADS genes from silver birch ( Betula pendula Roth). In this study, we investigated the more detailed function of one of them, BpMADS4 , a member of the APETALA1/FRUITFULL group of MADS genes. The expression of BpMADS4 starts at very early stage of the male and female inflorescence development and the activity is high in the apex of the developing inflorescence. Later, some expression is detected in the bracts and in the flower initials. Ectopic expression of BpMADS4 accelerates flowering dramatically in normally flowering clones and also in the early-flowering birch clone, in which the earliest line flowered about 11 days after rooting, when the saplings were only 3 cm high. The birches transformed with the BpMADS4 antisense construct showed remarkable delay in flowering and the number of flowering individuals was reduced. Two of the transformed lines did not show any signs of flower development during our 2-year study, whereas all the control plants formed inflorescences within 107 days. Our results show that BpMADS4 has a critical role in the initiation of birch inflorescence development and that BpMADS4 seems to be involved in the transition from vegetative to reproductive development. Therefore, BpMADS4 provides a promising tool for the genetic enhancement of forest trees.  相似文献   
79.
The ionic composition in the leaves of some glycophyte plants (Phaseolus vulgaris L., Lycopersicon esculentum L., and Amaranthus cruentus L.) was studied during leaf development. Plants were grown in a stationary hydroponic culture; a growth medium contained equimolar concentrations of inorganic ions (NO 3 ? , Cl?, SO 4 2? , H2PO 4 ? , K+, Ca2+, Mg2+, and Na+) equal to 5 mg-equiv./l for each ion. In the juvenile leaf, the main ions were K+ and water-soluble anions of organic acids represented mainly by di-and tricarboxylic acids in kidney bean and tomato and oxalic acid in amaranth. An increase in the total amount of organic anions, coinciding with the accumulation of bivalent cations, was registered in leaves of glycophytes during their development. Mature and senescing leaves of tomato and kidney bean accumulated mainly di-and tricarboxylic acid salts with the prevalence of Ca2+ ions. In amaranth leaves, the formation of water-insoluble (acid-soluble) oxalate pool containing Ca2+ ions (mature leaves) or Ca2+ and Mg2+ ions (senescing leaves) was registered. The priority role of the metabolism of organic acids in the formation of the ionic composition of glycophyte leaves during their development is discussed. It is supposed that the species-specific ionic composition of glycophyte leaves at different developmental stages is due mainly to the pattern of carbon metabolism causing the accumulation either of di-and tricarboxylic acids or oxalic acid.  相似文献   
80.
It has been demonstrated that the mycelium of Curvularia lunata at the end of the logarithmic growth phase displays a maximal 11-hydroxylase activity towards cortexolone (4-6 g/l) used for transformation as a microcrystalline suspension in phosphate buffer. The mycelium at a later stage of fungal growth displays an elevated 14-hydroxylase activity, necessary for generation of 14-hydroxyandrostenedione. The effects of different forms of substrate added to the reaction mixture, age and concentration of mycelium, and fungal clones tolerant to salts of heavy metals (0.35-0.5%) were studied to remove the side 14-hydroxylation, accompanying the main cortexolone transformation. Mycelia of the fungal clones tolerant to Co2+ and Cu2+ displayed a weak hydroxylase activity or its complete absence and an elevated content of melanin, the biosynthesis of which is intensified under adverse conditions. The results obtained suggest that the transformation of steroids by the studied C. lunata strain is a detoxication of foreign compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号