首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15083篇
  免费   1020篇
  国内免费   1篇
  16104篇
  2023年   114篇
  2022年   224篇
  2021年   443篇
  2020年   292篇
  2019年   355篇
  2018年   444篇
  2017年   405篇
  2016年   628篇
  2015年   947篇
  2014年   1012篇
  2013年   1254篇
  2012年   1479篇
  2011年   1331篇
  2010年   828篇
  2009年   710篇
  2008年   868篇
  2007年   852篇
  2006年   799篇
  2005年   656篇
  2004年   622篇
  2003年   547篇
  2002年   440篇
  2001年   92篇
  2000年   66篇
  1999年   96篇
  1998年   83篇
  1997年   74篇
  1996年   64篇
  1995年   48篇
  1994年   53篇
  1993年   37篇
  1992年   31篇
  1991年   22篇
  1990年   22篇
  1989年   19篇
  1988年   12篇
  1987年   17篇
  1986年   8篇
  1985年   10篇
  1984年   15篇
  1983年   14篇
  1982年   5篇
  1981年   9篇
  1980年   10篇
  1979年   6篇
  1978年   7篇
  1977年   7篇
  1975年   5篇
  1974年   3篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Tris (Tris(hydroxymethyl)amino methane), a compound often used as a buffer in microalgal culture media, sustains active bacterial growth in non-axenic microalgal cultures when sodium phosphate is present. The low pH levels caused by bacterial growth and probably the depletion of phosphorus in the medium caused the collapse ofPhaeodactylum tricornutum cultures resulting in a reduction of microalgal growth from 32 x 106 to 1.1 x 106 cells ml–1. This emphasizes the need for care when interpreting the results of non-axenic microalgae cultures in which Tris or other organic buffer is added.  相似文献   
72.
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.  相似文献   
73.
This article describes the phytochemical study of Cannabis sativa roots from northeastern Brazil. The dried plant material was pulverized and subjected to exhaustive maceration with ethanol at room temperature, obtaining the crude ethanolic extract (Cs-EEBR). The volatile compounds were analyzed by gas chromatography coupled with mass spectrometry (GC/MS), which allowed to identify 22 compounds by comparing the linear retention index (LRI), the similarity index (SI) and the fragmentation pattern of the constituents with the literature. By this technique the major compounds identified were: friedelan-3-one and β-sitosterol. In addition, two fractions were obtained from Cs-EEBR by classical column chromatography and preparative thin layer chromatography. These fractions were analyzed by NMR and IR and together with the mass spectrometry data allowed to identify the compounds: epifriedelanol, friedelan-3-one, β-sitosterol and stigmasterol. The study contributed to the phytochemical knowledge of Cannabis sativa, specifically the roots, as there are few reports on the chemical constituents of this part of the plant.  相似文献   
74.
The present study aimed to examine the phenolic content and evaluate the antimicrobial and antioxidant potential of ethanol extracts from the moss species Phyllogonium viride Brid. on the pathogenic bacteria Salmonella enterica serovar enteritidis, Staphylococcus aureus, Listeria monocytogenes and Escherichia coli, and the pathogenic fungi Candida albicans and Cryptococcus neoformans. The antimicrobial activity was determined from Minimum Inhibitory Concentration (MIC) Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC). Antioxidant activity was determined by the DPPH method. Folin-Denis reagent was used for the content of total phenolics and flavonoids and HPLC-DAD for identification of phenolic compounds. The results showed that bacteriostatic and bactericidal activities occurred at concentrations ranging from 9.76 μg/mL–78.13 μg/mL among all evaluated microorganisms. These values, considering the criteria used, suggest the P. viride extract as a potent antimicrobial. For antioxidant activity, P. viride extract was considered weak. Analysis of the phenolic content showed a wide range of compounds, with Kaempferol (0.41 mg/g) being the major compound, followed by t-cinnamic acid and caffeic acid (0.17 mg/g). Although P. viride is a species of moss not yet referenced in scientific publications of biotechnological interest, it has shown promising potential for further studies and possible application as an antimicrobial of natural origin.  相似文献   
75.
76.
Acute monocytic leukemia is a type of myeloid leukemia that develops in monocytes. The current clinical therapies for leukemia are unsatisfactory due to their side effects and nonspecificity toward target cells. Some lectins display antitumor activity and may specifically recognize cancer cells by binding to carbohydrate structures on their surface. Therefore, this study evaluated the response of the human monocytic leukemia cell lines THP-1 to the Olneya tesota PF2 lectin. The induction of apoptosis and reactive oxygen species production in PF2-treated cells was evaluated by flow cytometry, and the lectin-THP-1 cell interaction and mitochondrial membrane potential were evaluated by confocal fluorescence microscopy. PF2 genotoxicity was evaluated by DNA fragmentation analysis via gel electrophoresis. The results showed that PF2 binds to THP-1 cells, triggers apoptosis and DNA degradation, changes the mitochondrial membrane potential, and increases reactive oxygen species levels in PF2-treated THP-1 cells. These results suggest the potential use of PF2 for developing alternative anticancer treatments with enhanced specificity.  相似文献   
77.
78.
The significance of DNA repair to human health has been well documented by studies on xeroderma pigmentosum (XP) patients, who suffer a dramatically increased risk of cancer in sun-exposed areas of their skin [1] and [2]. This autosomal recessive disorder has been directly associated with a defect in nucleotide excision–repair (NER) [1] and [2]. Like human XP individuals, mice carrying homozygous mutations in XP genes manifest a predisposition to skin carcinogenesis following exposure to ultraviolet (UV) radiation [3], [4] and [5]. Recent studies have suggested that, in addition to roles in apoptosis [6] and cell-cycle checkpoint control [7] in response to DNA damage, p53 protein may modulate NER [8]. Mutations in the p53 gene have been observed in 50% of all human tumors [9] and have been implicated in both the early [10] and late [11] stages of skin cancer. To examine the consequences of a combined deficiency of the XPC and the p53 proteins in mice, we generated double-mutant animals. We document a spectrum of neural tube defects in XPC p53 mutant embryos. Additionally, we show that, following exposure to UV-B radiation, XPC p53 mutant mice have more severe solar keratosis and suffer accelerated skin cancer compared with XPC mutant mice that are wild-type with respect to p53.  相似文献   
79.
80.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号