首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20543篇
  免费   1475篇
  国内免费   1篇
  22019篇
  2024年   11篇
  2023年   157篇
  2022年   302篇
  2021年   611篇
  2020年   381篇
  2019年   456篇
  2018年   591篇
  2017年   543篇
  2016年   806篇
  2015年   1248篇
  2014年   1309篇
  2013年   1656篇
  2012年   1990篇
  2011年   1779篇
  2010年   1104篇
  2009年   957篇
  2008年   1192篇
  2007年   1155篇
  2006年   1050篇
  2005年   908篇
  2004年   861篇
  2003年   763篇
  2002年   657篇
  2001年   142篇
  2000年   97篇
  1999年   141篇
  1998年   149篇
  1997年   114篇
  1996年   107篇
  1995年   83篇
  1994年   76篇
  1993年   55篇
  1992年   48篇
  1991年   38篇
  1990年   69篇
  1989年   28篇
  1988年   24篇
  1987年   32篇
  1986年   21篇
  1985年   23篇
  1984年   38篇
  1983年   34篇
  1982年   19篇
  1981年   30篇
  1980年   17篇
  1979年   16篇
  1978年   16篇
  1977年   10篇
  1975年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Summary The redox interconversion of Escherichia coli glutathione reductase has been studied both in situ, with permeabilized cells treated with different reductants, and in vivo, with intact cells incubated with compounds known to alter their intracellular redox state.The enzyme from toulene-permeabilized cells was inactivated in situ by NADPH, NADH, dithionite, dithiothreitol, or GSH. The enzyme remained, however, fully active upon incubation with the oxidized forms of such compounds. The inactivation was time-, temperature-, and concentration-dependent; a 50% inactivation was promoted by just 2 M NADPH, while 700 M NADH was required for a similar effect. The enzyme from permeabilized cells was completely protected against redox inactivation by GSSG, and to a lesser extent by dithiothreitol, GSH, and NAD(P)+. The inactive enzyme was efficiently reactivated in situ by physiological GSSG concentrations. A significant reactivation was promoted also by GSH, although at concentrations two orders of magnitude below its physiological concentrations. The glutathione reductase from intact E. coli cells was inactivated in vivo by incubation with DL-malate, DL-isocitrate, or higher L-lactate concentrations. The enzyme was protected against redox inactivation and fully reactivated by diamide in a concentration-dependent fashion. Diamide reactivation was not dependent on the synthesis of new protein, thus suggesting that the effect was really a true reactivation and not due to de novo synthesis of active enzyme. The glutathione reductase activity increased significantly after incubation of intact cells with tert-butyl or cumene hydroperoxides, suggesting that the enzyme was partially inactive within such cells. In conclusion, the above results show that both in situ and in vivo the glutathione reductase of Escherichia coli is subjected to a redox interconversion mechanism probably controlled by the intracellular NADPH and GSSG concentrations.  相似文献   
52.
By complementation of an alpha-isopropylmalate synthase-negative mutant of Saccharomyces cerevisiae (leu4 leu5), a plasmid was isolated that carried a structural gene for alpha-isopropylmalate synthase. Restriction mapping and subcloning showed that sequences sufficient for complementation of the leu4 leu5 strain were located within a 2.2-kilobase SalI-PvuII segment. Southern transfer hybridization indicated that the cloned DNA was derived intact from the yeast genome. The cloned gene was identified as LEU4 by integrative transformation that caused gene disruption at the LEU4 locus. When this transformation was performed with a LEU4fbr LEU5 strain, the resulting transformants had lost the 5',5',5'-trifluoro-D,L-leucine resistance of the recipient strain but were still Leu+. When it was performed with a LEU4 leu5 recipient, the resulting transformants were Leu-. The alpha-isopropylmalate synthase of a transformant that carried the LEU4 gene on a multicopy plasmid (in a leu5 background) was characterized biochemically. The transformant contained about 20 times as much alpha-isopropylmalate synthase as wild type. The enzyme was sensitive to inhibition by leucine and coenzyme A, was inactivated by antibody generated against alpha-isopropylmalate synthase purified from wild type and was largely confined to the mitochondria. The subunit molecular weight was 65,000-67,000. Limited proteolysis generated two fragments with molecular weights of about 45,000 and 23,000. Northern transfer hybridization showed that the transformant produced large amounts of LEU4-specific RNA with a length of about 2.1 kilonucleotides. The properties of the plasmid-encoded enzyme resemble those of a previously characterized alpha-isopropylmalate synthase that is predominant in wild-type cells. The existence in yeast of a second alpha-isopropylmalate synthase activity that depends on the presence of an intact LEU5 gene is discussed.  相似文献   
53.
The isolation of eucannabinolide and three new sesquiterpene lactones from Schkuhria anthemoidea is reported. The structures and stereochemistries of the new compounds were established by chemical and spectroscopic means. The structure of santhemoidin B was confirmed by X-ray crystallography.  相似文献   
54.
Summary In the family Uloboridae, web reduction is associated with changes in web monitoring posture and prosomal features. A spider must extend its first pair of legs directly forward to monitor the signal line of a reduced web. This posture is facilitated by shifts in prosomal musculature that cause reduced web uloborids to have a narrower anterior prosoma, a reduced or absent anterior eye row, and prominent posterior lateral eye tubercles. The eye tubercles and larger posterior eyes of these uloborids suggest that web reduction may also be accompanied by ocular changes that compensate for reduction of the anterior eyes by expanding the visual fields of the posterior eyes. A comparison of the visual fields of the eight-eyed, orb web species Octonoba octonaria and a four-eyed, reduced web Miagrammopes species was made to determine if this is true. Physical and optical measurements determined the visual angles of each species' eyes and the pattern of each species' visual surveillance. Despite loss of the anterior four eyes, the Miagrammopes species has a visual coverage similar to that of O. octonaria. This is due to (1) an increase in the visual field of each of the four remaining Miagrammopes eyes, accruing from an extension of the retina and an increase in the lens' rear radius of curvature, and (2) a ventral shift of each visual axis, associated with the development of an eye tubercle and an asymmetrical expansion of the retina. Miagrammopes monitor their simple webs from twigs or moss where they are vulnerable to predation. Therefore, maintenance of visual cover may enable them to detect predators in time to assume or maintain their characteristic, cryptic posture. It may also allow them to observe approaching prey and permit them to adjust web tension or prepare to jerk their webs when prey strikes.  相似文献   
55.
56.
57.
Summary Brush border membrane vesicles (BBMV) were prepared from the gills of the marine mussel,Mytilus edulis. These membranes contained two distinct pathways for cotransport of Na+ and -neutral amino acids. The major pathway in mussel gill BBMV was the alanine-lysine (AK) pathway, which had a high affinity for alanine and for the cationic amino acid, lysine. The AK pathway was inhibited by nonpolar -neutral amino acids and cationic amino acids, but was not affected by -neutral amino acids or imino acids. The kinetics of lysine transport were consistent with a single saturable process, with aJ max of 550 pmol/mg-min and aK t of 5 m. The AK pathway did not have a strict requirement for Na+, and concentrative transport of lysine was seen in the presence of inwardly directed gradients of Li+ and K+, as well as Na+. Harmaline inhibited the transport of lysine in solutions containing either Na+ or K+. The alanine-proline (AP) pathway transported both alanine and proline in mussel gill BBMV. The AP pathway was strongly inhibited by nonpolar -neutral amino acids, proline, and -(methylamino)isobutyric acid (Me-AIB). The kinetics of proline transport were described by a single saturable process, with aJ max of 180 pmol/mg-min andK t of 4 m. In contrast to the AK pathway, the AP pathway appeared to have a strict requirement for Na+. Na+-activation experiments with lysine and proline revealed sigmoid kinetics, indicating that multiple Na+ ions are involved in the transport of these substrates. The transport of both lysine and proline was affected by membrane potential in a manner consistent with electrogenic transport.  相似文献   
58.
Several recent reports have described large numbers of monoclonal antibodies that cross-react with toxins A and B ofClostridium difficile; this suggests that the toxins share major epitopes. Our results show that monoclonal antibodies (MAb) against other antigens bind nonspecifically to both toxins. Therefore, we believe that the cross-reacting MAb bind by this manner and not by a true immune reaction.  相似文献   
59.
The concentration of lignin in plant tissue is a major factor controlling organic matter degradation rates in forest ecosystems. Microbial biomass and lignin and cellulose decomposition were measured for six weeks in forest soil microcosms in order to determine the influence of pH, moisture, and temperature on organic matter decomposition. Microbial biomass was determined by chloroform fumigation; lignin and cellulose decomposition were measured radiometrically. The experiment was designed as a Latin square with soils of pH of 4.5, 5.5, and 6.5 adjusted to 20, 40, or 60% moisture content, and incubated at temperatures of 4, 12, or 24°C. Microbial biomass and lignin and cellulose decomposition were not significantly affected by soil acidity. Microbial biomass was greater at higher soil moisture contents. Lignin and cellulose decomposition significantly increased at higher soil temperatures and moisture contents. Soil moisture was more important in affecting microbial biomass than either soil temperature or soil pH.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号