首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21586篇
  免费   1583篇
  国内免费   1篇
  23170篇
  2024年   12篇
  2023年   160篇
  2022年   310篇
  2021年   640篇
  2020年   398篇
  2019年   488篇
  2018年   625篇
  2017年   571篇
  2016年   848篇
  2015年   1291篇
  2014年   1353篇
  2013年   1726篇
  2012年   2046篇
  2011年   1856篇
  2010年   1141篇
  2009年   1003篇
  2008年   1243篇
  2007年   1209篇
  2006年   1103篇
  2005年   943篇
  2004年   894篇
  2003年   793篇
  2002年   689篇
  2001年   174篇
  2000年   123篇
  1999年   167篇
  1998年   162篇
  1997年   124篇
  1996年   115篇
  1995年   90篇
  1994年   82篇
  1993年   64篇
  1992年   64篇
  1991年   61篇
  1990年   80篇
  1989年   40篇
  1988年   34篇
  1987年   41篇
  1986年   28篇
  1985年   32篇
  1984年   49篇
  1983年   42篇
  1982年   22篇
  1981年   31篇
  1980年   18篇
  1979年   19篇
  1978年   18篇
  1977年   14篇
  1975年   19篇
  1972年   12篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
81.
82.
Ilyonectria radicicola and its Cylindrocarpon-like anamorph represent a species complex that is commonly associated with root rot disease symptoms on a range of hosts. During the course of this study, several species could be distinguished from I. radicicola sensu stricto based on morphological and culture characteristics. DNA sequence analysis of the partial ??-tubulin, histone H3, translation elongation factor 1-?? and nuclear ribosomal RNA-Internal Transcribed Spacer (nrRNA-ITS) genes were employed to provide further support for the morphological species resolved among 68 isolates associated with root rot disease symptoms. Of the various loci screened, nrRNA-ITS sequences were the least informative, while histone H3 sequences were the most informative, resolving the same number of species as the combined dataset across the four genes. Within the Ilyonectria radicicola species complex, 12 new taxa are delineated occurring on a diverse range of hosts, the most common being Cyclamen, Lilium, Panax, Pseudotsuga, Quercus and Vitis.  相似文献   
83.
CONSTANS-Like (COL) proteins are plant-specific nuclear regulators of gene expression but do not contain a known DNA-binding motif. We tested whether a common DNA-binding protein can deliver these proteins to specific cis-acting elements. We screened for proteins that interact with two members of a subgroup of COL proteins. These COL proteins were Tomato COL1 (TCOL1), which does not seem to be involved in the control of flowering time, and the Arabidopsis thaliana CONSTANS (AtCO) protein which mediates photoperiodic induction of flowering. We show that the C-terminal plant-specific CCT (CO, CO-like, TIMING OF CAB EXPRESSION 1) domain of both proteins binds the trimeric CCAAT binding factor (CBF) via its HAP5/NF-YC component. Chromatin immunoprecipitation demonstrated that TCOL is recruited to the CCAAT motifs of the yeast CYC1 and HEM1 promoters by HAP5. In Arabidopsis, each of the three CBF components is encoded by several different genes that are highly transcribed. Under warm long days, high levels of expression of a tomato HAP5 (THAP5a) gene can reduce the flowering time of Arabidopsis. A mutation in the CCT domain of TCOL1 disrupts the interaction with THAP5 and the analogous mutation in AtCO impairs its function and delays flowering. CBFs are therefore likely to recruit COL proteins to their DNA target motifs in planta.  相似文献   
84.
The prevalence of liver diseases emphasizes the need of animal models to research on the mechanism of disease pathogenesis. Furthermore, most of the liver pathologies have the oxidative stress as an important component. The senescence-accelerated mouse strain SAMP8 was proposed as a valuable animal model for the study of liver diseases. To gain a better understanding of the mechanisms underlying degenerative processes in SAMP8 mice livers, we studied the oxidative-induced damage in 5-month-old SAMP8 mice and SAMR1, senescence-accelerated-resistant mice. We found profound differences in the antioxidant response to aging between sexes, with males displaying lowest levels of main antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) in SAMP8; whereas females had no difference in their activities, except for GR, when compared with their SAMR1 controls. The results obtained show the binomial SOD/CAT as an important factor for counteracting reactive oxygen species-dependent damage. There were not pathological differences at the morphological level between both strains, although the decay in protection against free radicals had an immediate response by increasing lipid and protein oxidative damage in SAMP8 mice liver. At 5 months, both male and female SAMP8 mice confront the oxidative stress challenge to different extents. Indeed, proteins seem to be the most vulnerable biomolecule in SAMP8 male mice.  相似文献   
85.
86.
87.
In non-mammalian vertebrates, the pineal gland is photoreceptive and contains an intrinsic circadian oscillator that drives rhythmic production and secretion of melatonin. These features require an accurate spatiotemporal expression of an array of specific genes in the pineal gland. Among these is the arylalkylamine N-acetyltransferase, a key enzyme in the melatonin production pathway. In zebrafish, pineal specificity of zfaanat2 is determined by a region designated the pineal-restrictive downstream module (PRDM), which contains three photoreceptor conserved elements (PCEs) and an E-box, elements that are generally associated with photoreceptor-specific and rhythmic expression, respectively. Here, by using in vivo and in vitro approaches, it was found that the PCEs and E-box of the PRDM mediate a synergistic effect of the photoreceptor-specific homeobox OTX5 and rhythmically expressed clock protein heterodimer, BMAL/CLOCK, on zfaanat2 expression. Furthermore, the distance between the PCEs and the E-box was found to be critical for PRDM function, suggesting a possible physical feature of this synergistic interaction. OTX5-BMAL/CLOCK may act through this mechanism to simultaneously control pineal-specific and rhythmic expression of zfaanat2 and possibly also other pineal and retinal genes.  相似文献   
88.
Paracoccidioidomycosis, a deep mycosis endemic in Latin America, is a chronic granulomatous disease caused by the fungus Paracoccidioides brasiliensis. Phagocytic cells play a critical role against this fungus, and several studies have shown the effects of activator and suppressive cytokines on macrophage and monocyte functions. However, studies on polymorphonuclear neutrophils (PMNs), that are the first cells recruited to the infection sites, are scarcer. Thus, the objective of this paper was to assess whether interleukin-10 (IL-10), a potent anti-inflammatory cytokine, is able to block the activity of IFN-gamma-activated human PMNs upon P. brasiliensis intracellular killing, in vitro. The results showed that IFN-gamma-activated PMNs have an effective fungicidal activity against the fungus. This activity was associated with the release of high levels of H(2)O(2), the metabolite involved in phagocytic cells antifungal activities. However, the concomitant incubation of these cells with IFN-gamma and IL-10 significantly blocked IFN-gamma activation. As a consequence, PMNs killing activity and H(2)O(2) release were inhibited. Together, our results show the importance of PMNs exposure to activator or suppressor cytokines in the early stages of paracoccidioidomycosis infection.  相似文献   
89.
In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号