首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15048篇
  免费   1020篇
  国内免费   1篇
  2023年   106篇
  2022年   197篇
  2021年   443篇
  2020年   292篇
  2019年   355篇
  2018年   444篇
  2017年   405篇
  2016年   628篇
  2015年   947篇
  2014年   1012篇
  2013年   1254篇
  2012年   1479篇
  2011年   1332篇
  2010年   827篇
  2009年   710篇
  2008年   868篇
  2007年   852篇
  2006年   799篇
  2005年   656篇
  2004年   622篇
  2003年   547篇
  2002年   440篇
  2001年   92篇
  2000年   66篇
  1999年   96篇
  1998年   83篇
  1997年   74篇
  1996年   64篇
  1995年   48篇
  1994年   53篇
  1993年   37篇
  1992年   31篇
  1991年   22篇
  1990年   22篇
  1989年   19篇
  1988年   12篇
  1987年   17篇
  1986年   8篇
  1985年   10篇
  1984年   15篇
  1983年   14篇
  1982年   5篇
  1981年   9篇
  1980年   10篇
  1979年   6篇
  1978年   7篇
  1977年   7篇
  1975年   5篇
  1974年   3篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
101.
In a previous publication (Rodriguez, M.L., M. Brignoni, and P.J.I. Salas. 1994. J. Cell Sci. 107: 3145–3151), we described the existence of a terminal web-like structure in nonbrush border cells, which comprises a specifically apical cytokeratin, presumably cytokeratin 19. In the present study we confirmed the apical distribution of cytokeratin 19 and expanded that observation to other epithelial cells in tissue culture and in vivo. In tissue culture, subconfluent cell stocks under continuous treatment with two different 21-mer phosphorothioate oligodeoxy nucleotides that targeted cytokeratin 19 mRNA enabled us to obtain confluent monolayers with a partial (40–70%) and transitory reduction in this protein. The expression of other cytoskeletal proteins was undisturbed. This downregulation of cytokeratin 19 resulted in (a) decrease in the number of microvilli; (b) disorganization of the apical (but not lateral or basal) filamentous actin and abnormal apical microtubules; and (c) depletion or redistribution of apical membrane proteins as determined by differential apical–basolateral biotinylation. In fact, a subset of detergent-insoluble proteins was not expressed on the cell surface in cells with lower levels of cytokeratin 19. Apical proteins purified in the detergent phase of Triton X-114 (typically integral membrane proteins) and those differentially extracted in Triton X-100 at 37°C or in n-octyl-β-d-glycoside at 4°C (representative of GPIanchored proteins), appeared partially redistributed to the basolateral domain. A transmembrane apical protein, sucrase isomaltase, was found mispolarized in a subpopulation of the cells treated with antisense oligonucleotides, while the basolateral polarity of Na+– K+ATPase was not affected. Both sucrase isomaltase and alkaline phosphatase (a GPI-anchored protein) appeared partially depolarized in A19 treated CACO-2 monolayers as determined by differential biotinylation, affinity purification, and immunoblot. These results suggest that an apical submembrane cytoskeleton of intermediate filaments is expressed in a number of epithelia, including those without a brush border, although it may not be universal. In addition, these data indicate that this structure is involved in the organization of the apical region of the cytoplasm and the apical membrane.Cell polarity (asymmetry) is a broadly distributed and highly conserved feature of many different cell types, from prokaryotes to higher eukaryotes (Nelson, 1992). In multicellular organisms it is more conspicuous in, but not restricted to, neurons and epithelial cells. In the latter, the plasma membrane is organized in two different domains, apical and basolateral. This characteristic enables epithelia to accomplish their most specialized roles including absorption and secretion and, in general, to perform the functions of organs with an epithelial parenchyma such as the kidney, liver, intestine, stomach, exocrine glands, etc. (Simons and Fuller, 1985; Rodriguez-Boulan and Nelson, 1989).The acquisition and maintenance of epithelial polarity is based on multiple interrelated mechanisms that may work in parallel. Although the origin of polarization depends on the sorting of apical and basolateral membrane proteins at the trans-Golgi network (Simons and Wandinger-Ness, 1990), the mechanisms involved in the transport of apical or basolateral carrier vesicles, the specific fusion of such vesicles to the appropriate domain, and the retention of membrane proteins in their correct positions are also important (Wollner and Nelson, 1992). Various components of the cytoskeleton seem to be especially involved in these mechanisms (Mays et al., 1994). Among them, the microtubules, characteristically oriented in the apical–basal axis with their minus ends facing toward the apical domain, appear in a strategic position to transport carrier vesicles (Bacallao et al., 1989). This orientation is largely expected because of the apical distribution of centrioles and microtubule organizing centers in epithelial cells (Buendia et al., 1990). The molecular interactions responsible for that localization, however, are unknown.Actin is a widespread component of the membrane skeleton found under apical, lateral, and basal membranes in a nonpolarized fashion (Drenckhahn and Dermietzel, 1988; Vega-Salas et al., 1988). Actin bundling into microvillus cores in the presence of villin/fimbrin, on the other hand, is highly polarized to the apical domain (Ezzell et al., 1989; Louvard et al., 1992). In fact, different isoforms of plastins determine microvillus shape in a tissue-specific manner (Arpin et al., 1994b ). Why this arrangement is not found in other actin-rich regions of the cell is unclear (Louvard et al., 1992; Fath and Burgess, 1995).Fodrin, the nonerythroid form of spectrin, underlies the basolateral domain (Nelson and Veshnock, 1987a ,b) and is known to participate in the anchoring/retention of basolateral proteins (Drenckhahn et al., 1985; Nelson and Hammerton, 1989). Although different groups have found specific cytoskeletal anchoring of apical membrane proteins at the “correct” domain (Ojakian and Schwimmer, 1988; Salas et al., 1988; Parry et al., 1990), no specific apical counterpart of the basolateral fodrin cytoskeleton is known. This is especially puzzling since we showed that MDCK cells can maintain apical polarity in the absence of tight junctions, an indication that intradomain retention mechanisms are operational for apical membrane proteins (Vega-Salas et al., 1987a ).It is known that a network of intermediate filament (IF)1, the major component of the terminal web, bridges the desmosomes under the apical membrane in brush border cells (Franke et al., 1979; Hull and Staehelin, 1979; Mooseker, 1985), although no specific protein has been identified with this structure. The observation of a remarkable resistance to extractions of apical proteins anchored to cytoskeletal preparations (Salas et al., 1988) comparable to that of intermediate filaments, led us to the study of cytokeratins in polarized cells. We developed an antibody against a 53-kD intermediate filament protein in MDCK cells. This protein was found to be distributed exclusively to the apical domain and to form large (2,900 S) multi-protein complexes with apical plasma membrane proteins. Internal microsequencing of the 53-kD protein showed very high (95– 100%) homology with two polypeptides in the rod domain of cytokeratin 19 (CK19; Moll et al., 1982) a highly conserved and peculiar intermediate filament protein (Bader et al., 1986). A complete identification however, could not be achieved (Rodriguez et al., 1994). The present study was undertaken to establish that identity and to determine the possible functions of this apical membrane skeleton. Because cytokeratins have been poorly characterized in canine cells, and no cytokeratin sequences are available in this species, we decided to switch from MDCK cells to two human epithelial cell lines, CACO-2, an extensively studied model of epithelial polarization that differentiates in culture to form brush border containing cells (Pinto et al., 1983), and MCF-10A (Tait et al., 1990), a nontumorigenic cell line derived from normal mammary epithelia, as a model of nonbrush border cells.To assess possible functions of cytokeratin 19, we chose to selectively reduce its synthesis using anti-sense phosphorothioate oligodeoxy nucleotides, an extensively used approach in recent years (e.g., Ferreira et al., 1992 ; Hubber et al., 1993; Takeuchi et al., 1994). Although we could not achieve a complete knock out, the steady-state levels of cytokeratin 19 were decreased to an extent that enabled us to detect significant changes in the phenotype of CACO-2 and MCF-10A cells.  相似文献   
102.
Several reports have claimed that the mitochondrial chaperonin cpn60, or a close homolog, is also present in some other subcellular compartments of the eukaryotic cell. Immunoelectron microscopy studies, using a polyclonal serum against cpn60, revealed that the protein is exclusively localized within the mitochondria of rat liver and embryonic Drosophila cells (SL2). Furthermore, no cpn60 immunoreactive material could be found within the nucleus of SL2 cells subjected to a 1 h 37°C heat-shock treatment. In contrast to these findings, immunoelectron microscopy studies, using a cpn60 monoclonal antibody, revealed mitochondrial and extramitochondrial (plasma membrane, nucleus) immunoreactive material in rat liver cells. Surprisingly, the monoclonal antibody also reacted with fixed proteins of the mature red blood cell. The monoclonal antibody, as well as cpn60 polyclonal sera, only recognize mitochondrial cpn60 in Western blots of liver proteins. Furthermore, none of the cpn60 antibodies used in this study recognized blotted proteins from rat red blood cells. Therefore, we suggest that the reported extramitochondrial localization of cpn60 in metazoan cells may be due to cross-reactivity of some of cpn60 antibodies with conformational epitopes also present in distantly related cpn60 protein homologs that are preserved during fixation procedures of the cells. © 1995 Wiley-Liss, Inc.  相似文献   
103.
The distribution of aphidicolin-induced chromosomal lesions was analyzed to determine the relative breakage susceptibility of euchromatin and heterochromatin in the cactus mouse, Peromyscus eremicus. The observed breakage was tested against expected distributions corresponding to the karyotypic proportions of autosomal euchromatin, autosomal heterochromatin, X-chromosomal euchromatin, and X-chromosomal heterochromatin. The distribution of induced breakage was independent of sex but dependent on the individual. In all individuals, there was a highly significant (P0.0001) deficiency in the number of breaks observed as compared to expected in autosomal heterochromatin. Sparse observations in the X chromosome and the absence of breaks in the Y chromosome precluded valid statistical tests of the sex-chromosomal distribution of induced breakage. These data indicate that the autosomal heterochromatin of Peromyscus is resistant to aphidicolin-induced chromosomal breakage and argue against a simple relationship between late replication and a general mechanism for chromosomal fragility.  相似文献   
104.
In mixed culture of Lactobacillus hilgardii X1B and Leuconostoc oenos X2L, isolated from Argentinian wines, an amensalistic growth response was observed: Leuconostoc oenos did not grow, and after 24 h of incubation at 30°C no viable cells were detected. In pure and mixed cultures, Lactobacillus hilgardii produced hydrogen peroxide early in the growth cycle, reaching the maximum at 24 h. The values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for the action of hydrogen peroxide on the growth of Leuconostoc oenos were: 4.08g ml-1 and 17.00 g ml-1 respectively.  相似文献   
105.
The structure of the grasses megagametophyte is considered to be characteristic enough as to deserve a particular place in the megagametophyte typology. Furthermore, it is compared with those of other Monocotyledonous families to point out embryological affinities.Both are members of the Carrera del Investigador (Conicet, Argentina).  相似文献   
106.
107.
Mild sonication was used to obtain single cell suspensions of Paracoccidioides brasiliensis. These cells were intact by microscopic criteria. Direct cell counts in a given inoculum and colony formation on various media were used to determine plating efficiency. Sonicated and nonsonicated cell suspensions were used to study plating efficiency and to estimate viability by means of vital dyes. Methylene blue, Erythrosin B, and Janus green were unreliable when used with P. brasiliensis, but vital dyes were accurate when tested with Candida albicans.Acridine orange gave more meaningful results of viability. Estimates of viability, however, changed significantly as a result of relatively minor alterations in the composition of the suspending medium.In initial experiments, the plating efficiency of P. brasiliensis was dismally low. It descended abruptly with increasing dilution of inoculum. Efficiency was much improved if horse serum was added to brain heart infusion plates or if glucose glycine yeast extract (GGY) plates were incubated at room temperature and mycelial colonies were counted. With the technique we report, current plating efficiency of sonicated suspensions is of the order of 25 %. Our results and procedures have an important bearing upon those studies concerned with in vitro killing of P. brasiliensis in suspensions or with isolating this fungus from clinical or environmental specimens.  相似文献   
108.
Summary Previous work by this and other laboratories has shown that glucagon administration stimulates calcium uptake by subsequently isolated hepatic mitochondria. This stimulation of hepatic mitochondrial Ca2+ uptake byin vivo administration of glucagon was further characterized in the present report. Maximal stimulation of mitochondrial Ca2+ accumulation was achieved between 6–10 min after the intravenous injection of glucagon into intact rats. Under control conditions, Ca2+ uptake was inhibited by the presence of Mg2+ in the incubation medium. Glucagon treatment, however, appeared to obliterate the observed inhibition by Mg2+ of mitochondrial Ca2+ uptake. Kinetic experiments revealed the usual sigmoidicity associated with initial velocity curves for mitochondrial calcium uptake. Glucagon treatment did not alter this sigmoidal relationship. Glucagon treatment significantly increased the Vmax for Ca2+ uptake from 292±22 to 377±34 nmoles Ca2+ /min per mg protein (n=8) but did not affect the K0.5, (6.5–8.6 μM). Since the major kinetic change in mitochondrial Ca2+ uptake evoked by glucagon is an increase in Vmax, the enhancement mechanism is likely to be an increase either in the number of active transport sites available to Ca2+ or in the rate of Ca2+ carrier movement across the mitochondrial membranes.  相似文献   
109.
Lettuce ferredoxin has been purified to homogeneity, with a yield of 18 mg/kg of denerved leaves. It crystallizes in magnificent needles, often clustered in broom-like sheaves. The absorption spectrum showed maxima at 460, 422, 330 and 274 nm,with a ratio A422/A274, of 0.46. The mM absorption coefficient was 9.74 at 422 nm, and 21.62 at 274 nm. This ferredoxin showed a pI = 4.7 and an E0 = ?425 mV (at pH = 7.7). MWs of 12 400, 11480 and 13000 were obtained by sucrose gradient centrifugation, and on the basis of the amino acid composition and the iron content, respectively, with an average of 12 300. The amino acid analysis showed the existence of one methionine residue per mole, with 105 amino acid residues. There are two iron atoms and two labile sulfide groups per mole; 4 half-cystine residues were found by performic acid oxidation, and 5 cysteine groups when determined by titration with pHMB. The native protein is not fixed on thiol-Sepharose 4B, but it is quantitatively retained after incubation with 8 M urea. Lettuce ferredoxin showed a 62, 58 and 78% effectiveness with the spinach ferredoxin-NADP reductase, nitrite reductase and fructose-1,6-diphosphatase (FDPase), respectively, when compared with the spinach ferredoxin. This different behaviour of both ferredoxins is joined to genetic-structural relationships, and suggests that the role of ferredoxin in FDPase activation is more sophisticated than that of a mere nonspecific reductant.  相似文献   
110.
Summary The mechanism of steroid uptake by the cell remains controversial. [3H]R5020 was utilized to characterize by photoaffinity labeling the steroid binding site in plasma membrane. This binding was saturable, reversible and had one type of binding site (K d = 33 ± 4 nm, B max = 32 ± 2 pmol/mg). [3H]R5020 could be prevented from binding by a variety of steroids (cortisol, progesterone, deoxycorticosterone, and levonorgestrel); estradiol did not have affinity for this binding site. The kinetics of R5020 photoactivation was time dependent and saturable. SDS-PAGE showed a specific band which corresponded to a 53-kDa peptide. The sucrose density gradient analysis has revealed the existence of a protein with a sedimentation coefficient of 3.6 ± 0.2 S. This polypeptide shows different characteristics than cytosolic steroid receptor or serum steroid binding proteins. This binding protein could correspond to the steroid binding site previously found in the plasma membrane.This work was supported by grants PB85-0461 from the Comisión Asesora de Investigatión Científica y Técnica and PGV-8612 from the Departamento de Educatión, Universidades e Investigation del Gobierno Vasco. We thank Roussel-Uclaf (France) for the nonradioactive RU-steroids kindly provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号