首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15095篇
  免费   1018篇
  国内免费   1篇
  16114篇
  2023年   114篇
  2022年   224篇
  2021年   443篇
  2020年   293篇
  2019年   355篇
  2018年   445篇
  2017年   405篇
  2016年   628篇
  2015年   948篇
  2014年   1012篇
  2013年   1254篇
  2012年   1481篇
  2011年   1336篇
  2010年   827篇
  2009年   710篇
  2008年   868篇
  2007年   852篇
  2006年   799篇
  2005年   656篇
  2004年   622篇
  2003年   547篇
  2002年   440篇
  2001年   93篇
  2000年   66篇
  1999年   96篇
  1998年   83篇
  1997年   74篇
  1996年   64篇
  1995年   48篇
  1994年   53篇
  1993年   37篇
  1992年   31篇
  1991年   22篇
  1990年   22篇
  1989年   19篇
  1988年   12篇
  1987年   17篇
  1986年   8篇
  1985年   10篇
  1984年   15篇
  1983年   14篇
  1982年   5篇
  1981年   9篇
  1980年   10篇
  1979年   6篇
  1978年   7篇
  1977年   7篇
  1975年   5篇
  1974年   3篇
  1972年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
There are few animal models of dengue infection, especially in immunocompetent mice. Here, we describe alterations found in adult immunocompetent mice inoculated with an adapted Dengue virus (DENV-3) strain. Infection of mice with the adapted DENV-3 caused inoculum-dependent lethality that was preceded by several hematological and biochemical changes and increased virus dissemination, features consistent with severe disease manifestation in humans. IFN-γ expression increased after DENV-3 infection of WT mice and this was preceded by increase in expression of IL-12 and IL-18. In DENV-3-inoculated IFN-γ(-/-) mice, there was enhanced lethality, which was preceded by severe disease manifestation and virus replication. Lack of IFN-γ production was associated with diminished NO-synthase 2 (NOS2) expression and higher susceptibility of NOS2(-/-) mice to DENV-3 infection. Therefore, mechanisms of protection to DENV-3 infection rely on IFN-γ-NOS2-NO-dependent control of viral replication and of disease severity, a pathway showed to be relevant for resistance to DENV infection in other experimental and clinical settings. Thus, the model of DENV-3 infection in immunocompetent mice described here represents a significant advance in animal models of severe dengue disease and may provide an important tool to the elucidation of immunopathogenesis of disease and of protective mechanisms associated with infection.  相似文献   
912.
Adenovirus assembly concludes with proteolytic processing of several capsid and core proteins. Immature virions containing precursor proteins lack infectivity because they cannot properly uncoat, becoming trapped in early endosomes. Structural studies have shown that precursors increase the network of interactions maintaining virion integrity. Using different biophysical techniques to analyze capsid disruption in vitro, we show that immature virions are more stable than the mature ones under a variety of stress conditions and that maturation primes adenovirus for highly cooperative DNA release. Cryoelectron tomography reveals that under mildly acidic conditions mimicking the early endosome, mature virions release pentons and peripheral core contents. At higher stress levels, both mature and immature capsids crack open. The virus core is completely released from cracked capsids in mature virions, but it remains connected to shell fragments in the immature particle. The extra stability of immature adenovirus does not equate with greater rigidity, because in nanoindentation assays immature virions exhibit greater elasticity than the mature particles. Our results have implications for the role of proteolytic maturation in adenovirus assembly and uncoating. Precursor proteins favor assembly by establishing stable interactions with the appropriate curvature and preventing premature ejection of contents by tightly sealing the capsid vertices. Upon maturation, core organization is looser, particularly at the periphery, and interactions preserving capsid curvature are weakened. The capsid becomes brittle, and pentons are more easily released. Based on these results, we hypothesize that changes in core compaction during maturation may increase capsid internal pressure to trigger proper uncoating of adenovirus.  相似文献   
913.
Delta‐opioid (DOP) receptors are members of the G protein‐coupled receptor (GPCR) sub‐family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu‐opioid (MOP), kappa‐opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr‐D ‐Ala‐Gly‐Phe‐D ‐Leu) and DPDPE (Tyr‐D ‐Pen‐Gly‐Phe‐D ‐Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta‐peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over‐simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond‐scale molecular dynamics and bias‐exchange metadynamics simulations. Free‐energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 21–27, 2014.  相似文献   
914.
Effects of chitosan, oligochitosan and the essential oils of clove and cinnamon were evaluated on hyphal morphology, cell wall thickness, minimum medium pH changes and respiration of Rhizopus stolonifer. Changes in hyphal morphology were observed due to chitosan or oligochitosan treatment in this fungus. Mycelial branching, abnormal shapes and swelling were showed on hyphae of R. stolonifer treated with chitosan, whereas the development of hyphae was markedly inhibited by the effect of oligochitosan. Clove and cinnamon oils caused few morphological changes in the hyphae of R. stolonifer. Cell wall thickness was increased approximately 2‐ to 3‐fold by effect of chitosan, oligochitosan and the essential oil of clove. R. stolonifer grown in minimum medium generated a decrease in the medium's pH. However, the addition of chitosan or oligochitosan caused increases in pH of medium culture. The highest pH value (5.4) was observed in the presence of chitosan. The respiration of R. stolonifer was stimulated at low concentrations of chitosan, oligochitosan or essential oils. Significant changes in morphology and physiology of this fungus were demonstrated by the effect of all evaluated compounds. The most important changes were induced on cells of R. stolonifer treated with chitosan and oligochitosan.  相似文献   
915.
Migration Stimulating Factor (MSF) is a genetically truncated isoform of fibronectin (Fn). MSF is a potent stimulator of fibroblast migration, whereas full length Fn is devoid of motogenic activity. MSF and Fn contain four IGD motifs, located in the 3rd, 5th, 7th and 9th type I modules; these modules are referred to as 3FnI, 5FnI, 7FnI and 9FnI, respectively. We have previously reported that mutation of IGD motifs in modules 7FnI and 9FnI of MSF is sufficient to completely abolish the motogenic response of target adult skin fibroblasts. We now report that the IGD sequences in 3FnI and 5FnI are also capable of exhibiting motogenic activity when present within fragments of MSF. When present within 1-5FnI, these sequences require the presence of serum or vitronectin for their motogenic activity to be manifest, whereas the IGD sequences in 7FnI and 9FnI are bioactive in the absence of serum factors. All MSF and IGD-containing peptides stimulated the phosphorylation of the integrin binding protein focal adhesion kinase (FAK) but did not necessarily affect migration. These results suggest that steric hindrance determines the motogenic activity of MSF and Fn, and that both molecules contain cryptic bioactive fragments.  相似文献   
916.
917.

Background

Deviations in the amount of genomic content that arise during tumorigenesis, called copy number alterations, are structural rearrangements that can critically affect gene expression patterns. Additionally, copy number alteration profiles allow insight into cancer discrimination, progression and complexity. On data obtained from high-throughput sequencing, improving quality through GC bias correction and keeping false positives to a minimum help build reliable copy number alteration profiles.

Results

We introduce seqCNA, a parallelized R package for an integral copy number analysis of high-throughput sequencing cancer data. The package includes novel methodology on (i) filtering, reducing false positives, and (ii) GC content correction, improving copy number profile quality, especially under great read coverage and high correlation between GC content and copy number. Adequate analysis steps are automatically chosen based on availability of paired-end mapping, matched normal samples and genome annotation.

Conclusions

seqCNA, available through Bioconductor, provides accurate copy number predictions in tumoural data, thanks to the extensive filtering and better GC bias correction, while providing an integrated and parallelized workflow.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-178) contains supplementary material, which is available to authorized users.  相似文献   
918.
Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders.  相似文献   
919.
920.
EGFR and cMET cross-talk is involved in breast cancer (BC) progression and resistance to different targeted therapies, however little is known about the co-expression patterns of EGFR and cMET or its prognostic significance in BC. Protein levels of EGFR, cMET and their phosphorylated proteins were measured in 825 BC samples using reverse phase protein array (RPPA). Given unimodal distribution of proteins, the median was selected as a cut-off after sensitivity analyses. Kaplan-Meier survival curves were used to estimate relapse-free (RFS) and overall survival (OS). Cox-proportional hazards models were utilized to determine associations between EGFR and cMET with outcomes. Mean age was 58 years with 457 (55%) hormone receptor (HR) positive, 211 (26%) triple-negative (TN) and 148 (18%) HER2 positive tumors (HER2+). HER2+ was associated with higher EGFR expression and phosphorylation, compared to HR and TN (p<0.05). High EGFR expression was associated with higher phosphorylated-cMET (p-cMET) but not cMET (ANOVA p-cMET p < 0.001; cMET p = 0.34). The same association was found with high phosphorylated-EGFR (p-EGFR) group at Tyr992 and Tyr1068 (both p < 0.001). High expressions in either of two p-EGFRs were linked with higher cMET as well (all p<0.001). For the TN subtype, high expression in EGFR and p-EGFR at Tyr992 but not at Tyr1068 was associated with higher p-cMET (p<0.00, p = 0.012, p = 0.4 respectively). Only high expression in p-EGFR at Tyr992 was linked with higher expression of cMET (p = 0.02). In contrast, among HER2 subtype, high expression in p-EGFR at Tyr1068 but not at Tyr992 was associated with higher cMET and p-cMET (cMET p = 0.023;p-cMET p<0.001). Four subgroups of patients defined by dichotomized EGFR/p-EGFR and cMET/p-cMET level demonstrated no significant differences in survival. In multivariate analyses, neither cMET nor EGFR expression/activation was found to be an independent prognostic factor in survival outcome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号