首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114247篇
  免费   1929篇
  国内免费   816篇
  2023年   171篇
  2022年   364篇
  2021年   705篇
  2020年   433篇
  2019年   526篇
  2018年   12293篇
  2017年   11042篇
  2016年   8296篇
  2015年   2019篇
  2014年   1789篇
  2013年   2051篇
  2012年   6367篇
  2011年   14575篇
  2010年   13030篇
  2009年   9194篇
  2008年   10998篇
  2007年   12474篇
  2006年   1418篇
  2005年   1430篇
  2004年   1858篇
  2003年   1811篇
  2002年   1440篇
  2001年   397篇
  2000年   252篇
  1999年   156篇
  1998年   149篇
  1997年   124篇
  1996年   95篇
  1995年   74篇
  1994年   82篇
  1993年   93篇
  1992年   73篇
  1991年   78篇
  1990年   43篇
  1989年   47篇
  1988年   41篇
  1987年   39篇
  1986年   18篇
  1985年   22篇
  1984年   37篇
  1983年   55篇
  1981年   25篇
  1980年   24篇
  1978年   22篇
  1977年   17篇
  1975年   19篇
  1972年   254篇
  1971年   279篇
  1965年   18篇
  1962年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
861.
Alginate-dextran sulfate (ADS) microgel has been used to protect insulin from gastrointestinal attack and as a carrier to promote insulin permeation through intestinal epithelium. The throughput of ADS submicron particles generation by emulsification/internal gelation is limited by its wide size distribution.  相似文献   
862.
Annitella apfelbecki is one of three Annitella species with distribution ranges restricted to the Balkan Peninsula. In this paper, we describe the hitherto unknown female of A. apfelbecki and give the most important morphological features to enable its identification and separation from the other Annitella females. Additionally, we provide new data on distribution and discuss zoogeography, life cycle and ecology of this species.  相似文献   
863.
Fungal infections are on the rise, with mortality above 30% in patients with septic Candida infections. Mutants lacking V-ATPase activity are avirulent and fail to acidify endomembrane compartments, exhibiting pleiotropic defects in secretory, endosomal, and vacuolar pathways. However, the individual contribution of organellar acidification to virulence and its associated traits is not known. To dissect their separate roles in Candida albicans pathogenicity we generated knock-out strains for the V0 subunit a genes VPH1 and STV1, which target the vacuole and secretory pathway, respectively. While the two subunits were redundant in many vma phenotypes, such as alkaline pH sensitivity, calcium homeostasis, respiratory defects, and cell wall integrity, we observed a unique contribution of VPH1. Specifically, vph1Δ was defective in acidification of the vacuole and its dependent functions, such as metal ion sequestration as evidenced by hypersensitivity to Zn2+ toxicity, whereas stv1Δ resembled wild type. In growth conditions that elicit morphogenic switching, vph1Δ was defective in forming hyphae whereas stv1Δ was normal or only modestly impaired. Host cell interactions were evaluated in vitro using the Caco-2 model of intestinal epithelial cells, and murine macrophages. Like wild type, stv1Δ was able to inflict cellular damage in Caco-2 and macrophage cells, as assayed by LDH release, and escape by filamentation. In contrast, vph1Δ resembled a vma7Δ mutant, with significant attenuation in host cell damage. Finally, we show that VPH1 is required for fungal virulence in a murine model of systemic infection. Our results suggest that vacuolar acidification has an essential function in the ability of C. albicans to form hyphae and establish infection.  相似文献   
864.
The ATPase-driven dimeric molecular Hsp90 (heat shock protein 90) and its cofactor Cdc37 (cell division cycle 37 protein) are crucial to prevent the cellular depletion of many protein kinases. In complex with Hsp90, Cdc37 is thought to bind an important lid structure in the ATPase domain of Hsp90 and inhibit ATP turnover by Hsp90. As different interaction modes have been reported, we were interested in the interaction mechanism of Hsp90 and Cdc37. We find that Cdc37 can bind to one subunit of the Hsp90 dimer. The inhibition of the ATPase activity is caused by a reduction in the closing rate of Hsp90 without obviously bridging the two subunits or affecting nucleotide accessibility to the binding site. Although human Cdc37 binds to the N-terminal domain of Hsp90, nematodal Cdc37 preferentially interacts with the middle domain of CeHsp90 and hHsp90, exposing two Cdc37 interaction sites. A previously unreported site in CeCdc37 is utilized for the middle domain interaction. Dephosphorylation of CeCdc37 by the Hsp90-associated phosphatase PPH-5, a step required during the kinase activation process, proceeds normally, even if only the new interaction site is used. This shows that the second interaction site is also functionally relevant and highlights that Cdc37, similar to the Hsp90 cofactors Sti1 and Aha1, may utilize two different attachment sites to restrict the conformational freedom and the ATP turnover of Hsp90.  相似文献   
865.
Eukaryotic cells critically depend on the correct regulation of intracellular vesicular trafficking to transport biological material. The Rab subfamily of small guanosine triphosphatases controls these processes by acting as a molecular on/off switch. To fulfill their function, active Rab proteins need to localize to intracellular membranes via posttranslationally attached geranylgeranyl lipids. Each member of the manifold Rab family localizes specifically to a distinct membrane, but it is unclear how this specific membrane recruitment is achieved. Here, we demonstrate that Rab-activating guanosine diphosphate/guanosine triphosphate exchange factors (GEFs) display the minimal targeting machinery for recruiting Rabs from the cytosol to the correct membrane using the Rab-GEF pairs Rab5A–Rabex-5, Rab1A-DrrA, and Rab8-Rabin8 as model systems. Specific mistargeting of Rabex-5/DrrA/Rabin8 to mitochondria led to catalytic recruitment of Rab5A/Rab1A/Rab8A in a time-dependent manner that required the catalytic activity of the GEF. Therefore, RabGEFs are major determinants for specific Rab membrane targeting.  相似文献   
866.
867.
868.
869.
CDP‐choline has shown neuroprotective effects in cerebral ischemia. In humans, although a recent trial International Citicoline Trial on Acute Stroke (ICTUS) has shown that global recovery is similar in CDP‐choline and placebo groups, CDP‐choline was shown to be more beneficial in some patients, such as those with moderate stroke severity and not treated with t‐PA. Several mechanisms have been proposed to explain the beneficial actions of CDP‐choline. We have now studied the participation of Sirtuin1 (SIRT1) in the neuroprotective actions of CDP‐choline. Fischer rats and Sirt1?/? mice were subjected to permanent focal ischemia. CDP‐choline (0.2 or 2 g/kg), sirtinol (a SIRT1 inhibitor; 10 mg/kg), and resveratrol (a SIRT1 activator; 2.5 mg/kg) were administered intraperitoneally. Brains were removed 24 and 48 h after ischemia for western blot analysis and infarct volume determination. Treatment with CDP‐choline increased SIRT1 protein levels in brain concomitantly to neuroprotection. Treatment with sirtinol blocked the reduction in infarct volume caused by CDP‐choline, whereas resveratrol elicited a strong synergistic neuroprotective effect with CDP‐choline. CDP‐choline failed to reduce infarct volume in Sirt1?/? mice. Our present results demonstrate a robust effect of CDP‐choline like SIRT1 activator by up‐regulating its expression. Our findings suggest that therapeutic strategies to activate SIRT1 may be useful in the treatment of stroke.

  相似文献   

870.
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrPSC) has been studied in depth, the physiological role of PrPC remains elusive and controversial. PrPC is a cell‐surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrPC in animals and in cellular models. In this article, we present PrPC‐dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrPC over‐expression enhances cell proliferation and cell cycle re‐entrance after serum stimulation, while PrPC silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrPC in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrPC in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrPC over‐expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT‐Cdc42‐N‐WASP‐dependent pathway.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号