首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15199篇
  免费   547篇
  国内免费   315篇
  2024年   10篇
  2023年   68篇
  2022年   217篇
  2021年   477篇
  2020年   271篇
  2019年   401篇
  2018年   598篇
  2017年   513篇
  2016年   857篇
  2015年   1150篇
  2014年   1068篇
  2013年   1505篇
  2012年   1171篇
  2011年   955篇
  2010年   999篇
  2009年   870篇
  2008年   817篇
  2007年   738篇
  2006年   711篇
  2005年   524篇
  2004年   325篇
  2003年   238篇
  2002年   221篇
  2001年   148篇
  2000年   227篇
  1999年   147篇
  1998年   122篇
  1997年   103篇
  1996年   76篇
  1995年   51篇
  1994年   34篇
  1993年   29篇
  1992年   45篇
  1991年   41篇
  1990年   30篇
  1989年   32篇
  1988年   14篇
  1987年   24篇
  1986年   20篇
  1985年   20篇
  1983年   16篇
  1982年   14篇
  1981年   16篇
  1980年   13篇
  1979年   11篇
  1976年   10篇
  1975年   11篇
  1973年   9篇
  1972年   13篇
  1971年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
D J Kihm  G J Leyer  G H An    E A Johnson 《Applied microbiology》1994,60(10):3854-3861
Listeria monocytogenes was highly resistant to hen egg white lysozyme in whole milk but was sensitive in media and in phosphate buffer. Methods to sensitize the pathogen to lysozyme in milk were investigated. Treatment of whole milk by cation exchange to remove minerals, particularly Ca2+ and Mg2+, slightly promoted inactivation of L. monocytogenes by lysozyme at 4 degrees C over a period of 6 days. Heat treatment (62.5 degrees C for 15 s) strongly sensitized L. monocytogenes to lysozyme in demineralized milk and in MES [2-(N-morpholino)ethanesulfonic acid] buffer. Addition of Ca2+ or Mg2+ to the demineralized milk restored resistance to lysozyme. Cells were more rapidly heat inactivated at 55 degrees C in demineralized milk containing lysozyme, and addition of Ca2+ to the demineralized milk restored the resistance to heat. The results indicate that minerals or mineral-associated components protect L. monocytogenes from inactivation by lysozyme and heat in milk, probably by increasing cell surface stability. The heat treatment of foods containing added lysozyme can probably play a significant role in producing microbiologically safe foods.  相似文献   
72.
73.
在细叶黄芪叶肉原生质体发育早期,细胞器的变化较大。离体培养4h后,线粒体的嵴和基质物质开始增加。培养3—5天后,线粒体的数量增加5倍以上,此时可见大部分线粒体围绕细胞核分布。在培养24h后,高尔基体开始发育,它们主要分布在细胞质周边区域。多糖细胞化学染色表明,高尔基体内沉积着大量嗜银物质。培养1天后,粗面内质网开始发育。培养3天时,部分叶绿体边缘出现一些空隙结构。随着叶绿体内膜结构的消失,淀粉粒增大,叶绿体逐渐转变为造粉质体。  相似文献   
74.
Many cool-season grasses (subfamily Pooideae) possess maternally transmitted fungal symbionts which cause no known pathology and often enhance the ecological fitness and biochemical capabilities of the grass hosts. The most commonly described endophytes are the Acremonium section Albo-lanosa spp. (Acremonium endophytes), which are conidial anamorphs (strictly asexual forms) of Epichloë typhina. Other endophytes which have been noted are a Gliocladium-like fungus in perennial ryegrass (Lolium perenne L.) and a Phialophora-like fungus in tall fescue (Festuca arundinacea Schreb.). Here, we report the identification of additional non-Acremonium sp. endophytes (herein designated p-endophytes) in three more grass species: Festuca gigantea, Festuca arizonica, and Festuca pratensis. In each grass species, the p-endophyte was cosymbiotic with an Acremonium endophyte. Serological analysis and sequence determinations of variable portions of their rRNA genes indicated that the two previously identified non-Acremonium endophytes are closely related to each other and to the newly identified p-endophytes. Therefore, the p-endophytes represent a second group of widely distributed grass symbionts.  相似文献   
75.
76.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   
77.
Acute liver failure (ALF) is an inflammation-mediated hepatocyte death process associated with ferroptosis. Avicularin (AL), a Chinese herbal medicine, exerts anti-inflammatory and antioxidative effects. However, the protective effect of AL and the mechanism on ALF have not been reported. Our in vivo results suggest that AL significantly alleviated lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced hepatic pathological injury, liver enzymes, inflammatory cytokines, reactive oxygen species and iron levels and increased the antioxidant enzyme activities (malondialdehyde and glutathione). Our further in vitro experiments demonstrated that AL suppressed inflammatory response in LPS-stimulated RAW 264.7 cells via blocking the toll-like receptor 4 (TLR4)/myeloid differentiation protein-88 (MyD88)/nuclear factor kappa B (NF-κB) pathway. Moreover, AL attenuated ferroptosis in D-GalN-induced HepG2 cells by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) pathway. Therefore, AL can alleviate inflammatory response and ferroptosis in LPS/D-GalN-induced ALF, and its protective effects are associated with blocking TLR4/MyD88/NF-κB pathway and activating Nrf2/HO-1/GPX4 pathway. Moreover, AL is a promising therapeutic option for ALF and should be clinically explored.  相似文献   
78.
Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals.  相似文献   
79.
Although Platycodon grandiflorum (Jacq.) A.DC. is a renowned medicine food homology plant, reports of excessive cadmium (Cd) levels are common, which affects its safety for clinical use and food consumption. To enable its Cd levels to be regulated or reduced, it is necessary to first elucidate the mechanism of Cd uptake and accumulation in the plant, in addition to its detoxification mechanisms. This present study used inductively couple plasma-mass-spectrometry to analyze the subcellular distribution and chemical forms of Cd in different tissues of P. grandiflorum. The experimental results showed that Cd was mainly accumulated in the roots [predominantly in the cell wall (50.96%–61.42%)], and it was found primarily in hypomobile and hypotoxic forms. The proportion of Cd in the soluble fraction increased after Cd exposure, and the proportion of insoluble phosphate Cd and oxalate Cd increased in roots and leaves, with a higher increase in oxalate Cd. Therefore, it is likely that root retention mechanisms, cell wall deposition, vacuole sequestration, and the formation of low mobility and low toxicity forms are tolerance strategies for Cd detoxification used by P. grandiflorum. The results of this study provide a theoretical grounding for the study of Cd accumulation and detoxification mechanisms in P. grandiflorum, and they can be used as a reference for developing Cd limits and standards for other medicine food homology plants.  相似文献   
80.
为探究中国沙棘对土壤镉(Cd)胁迫的性别响应差异,该研究以中国沙棘2年生幼苗为材料,利用盆栽试验研究在不同浓度Cd处理下(0(CK)、25、50、100和200 mg·kg-1)雌、雄株幼苗的生长、叶片生理特性以及Cd富集特征的差异。结果表明:(1)Cd处理下中国沙棘幼苗雌、雄株的株高和基径生长以及各器官生物量均表现出低浓度(<50 mg·kg-1)促进,高浓度(> 100 mg·kg-1)抑制的现象;低浓度Cd处理下雌株的株高、基径增长率和生物量的增幅均高于雄株;高浓度Cd处理下(200 mg·kg-1)雄株株高增长率、叶生物量和总生物量分别较CK显著降低,而雌株均未显著下降。(2)随着Cd浓度升高,雌、雄株叶片光合色素含量和抗氧化酶活性呈先升后降的变化趋势,丙二醛(MDA)和渗透调节物质含量呈上升趋势;Cd浓度为50~200 mg·kg-1时,雌株叶片的光合色素含量、抗氧化酶活性和渗透调节物质含量均高于雄株,而MDA含量始终低于雄株。(3)随着Cd浓度升高,雌、...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号