首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36135篇
  免费   2138篇
  国内免费   1833篇
  2024年   49篇
  2023年   279篇
  2022年   884篇
  2021年   1599篇
  2020年   1014篇
  2019年   1311篇
  2018年   1481篇
  2017年   1166篇
  2016年   1774篇
  2015年   2398篇
  2014年   2575篇
  2013年   3184篇
  2012年   3016篇
  2011年   2694篇
  2010年   2050篇
  2009年   1827篇
  2008年   1894篇
  2007年   1704篇
  2006年   1508篇
  2005年   1243篇
  2004年   871篇
  2003年   765篇
  2002年   656篇
  2001年   498篇
  2000年   575篇
  1999年   481篇
  1998年   312篇
  1997年   274篇
  1996年   256篇
  1995年   227篇
  1994年   195篇
  1993年   148篇
  1992年   209篇
  1991年   161篇
  1990年   144篇
  1989年   115篇
  1988年   74篇
  1987年   75篇
  1986年   66篇
  1985年   65篇
  1984年   29篇
  1983年   29篇
  1982年   34篇
  1981年   25篇
  1980年   17篇
  1979年   17篇
  1975年   9篇
  1974年   9篇
  1972年   12篇
  1971年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
961.
Intramuscular fat (IMF) shortage causes the lack of juiciness and tenderness of goat meat, while peroxisome proliferator-activated receptor gamma 1 (PPARγ1) and gamma 2 (PPARγ2) play key roles in lipid metabolism. Nevertheless, their expression patterns and the relationship with IMF have been poorly exposed. Using quantitative polymerase chain reaction (qPCR), classical Soxhlet extraction, and in situ hybridization, we demonstrated that among 13 goat tissues, expression of PPARγ1 was dramatically higher than that of PPARγ2 except for lung. We further demonstrated the expression patterns of PPARγ1 and PPARγ2 and their negative association with intramuscular fat content in three goat muscles with kids growing. Meanwhile, PPARγ expression was located in the connective tissues. These results suggest that PPARγ1 is rather active for most tissues of goat, and closely related with the muscular fat metabolism during early postnatal life, but a more direct proof remains to be provided.  相似文献   
962.
Metallothioneins (MTs), a superfamily of cysteine-rich proteins, perform multiple functions, such as maintaining homeostasis of essential metals, detoxification of toxic metals and scavenging of oxyradicals. In this study, the promoter region of a metallothionein (MT) gene from Bay scallop Argopecten irradians (designed as AiMT1) was cloned by the technique of genomic DNA walking, and the polymorphisms in this region were screened to find their association with susceptibility or tolerance to high temperature stress. One insert–deletion (ins–del) polymorphism and sixteen single nucleotide polymorphisms (SNPs) were identified in the amplified promoter region. Two SNPs, − 375 T–C and − 337 A–C, were selected to analyze their distribution in the two Bay scallop populations collected from southern and northern China coast, which were identified as heat resistant and heat susceptible stocks, respectively. There were three genotypes, T/T, T/C and C/C, at locus − 375, and their frequencies were 25%, 61.1% and 13.9% in the heat susceptible stock, while 34.2%, 42.1% and 23.7% in the resistant stock, respectively. There was no significant difference in the frequency distribution of different genotypes between the two stocks (P > 0.05). In contrast, at locus − 337, three genotypes A/A, A/C and C/C were revealed with the frequencies of 11.6%, 34.9% and 53.5% in the heat susceptible stock, while 45.7%, 32.6% and 21.7% in the heat resistant stock, respectively. The frequency of C/C genotype in the heat susceptible stock was significantly higher (P < 0.01) than that in the heat resistant stock, while the frequency of A/A in the heat resistant stock was significantly higher (P < 0.01) than that in the heat susceptible stock. Furthermore, the expression of AiMT1 mRNA in scallops with C/C genotype was significantly higher than that with A/A genotype (P < 0.05) after an acute heat treatment at 28 °C for 120 min. These results implied that the polymorphism at locus − 337 of AiMT1 was associated with the susceptibility/tolerance of scallops to heat stress, and the − 337 A/A genotype could be a potential marker available in future selection of Bay scallop with heat tolerance.  相似文献   
963.
964.
Alopecia areata (AA) is an inflammatory hair loss disorder with a major genetic component, which may cause great psychosocial distress for those affected. Studies have shown that interleukin-1 (IL-1) is a very potent inducer of hair loss and a significant human hair growth inhibitor. The 4-bp insertion/deletion (Indel) polymorphism (rs3783553) within the 3′ untranslated regions of IL1A gene has been suggested to be associated with risk of various types of cancers, possibly through regulating expression of IL-1α levels. In the current study, we estimated the susceptibility to AA associated with rs3783553 in two independent case–control panels of Eastern and Southern Chinese populations, totally containing 313 AA cases and 626 healthy controls. Logistic regression analysis showed that the heterozygote and the homozygote 4-bp ins/ins confer a significantly lower risk of AA in both panels and total subjects [odds ratio (OR) = 0.55, 95% confidence interval (C.I.) = 0.41–0.75, P = 6.24 × 10− 5; OR = 0.47, 95% C.I. = 0.28–0.76, P = 0.001, respectively]. Stratification analysis based on age onset showed that the protective roles of ins/del and ins/ins genotype against developing AA was more obvious in AA patients with early age onset (< 30 years) under dominant model (OR = 0.48, 95% C.I. = 0.29–0.77, P = 0.001). The results of luciferase assay showed that rs3783553 could influence expression of IL-1α in a miR-122 dependant manner. Taken together, our results suggested that the IL1A 4-bp indel polymorphism may be a marker for genetic susceptibility to patchy (mild) AA in Chinese populations, likely through miR-122 mediated regulation.  相似文献   
965.
966.
967.
Vaccination with meningococcal glycoconjugate vaccines has decreased the incidence of invasive meningitis worldwide. These vaccines contain purified capsular polysaccharides attached to a carrier protein. Because of derivatization chemistries used in the process, conjugation of polysaccharide to protein often results in heterogeneous mixtures. Well-defined vaccines are needed to determine the relationship between vaccine structure and generated immune response. Here, we describe efforts to produce well-defined vaccine candidates by chemoenzymatic synthesis. Chemically synthesized lactosides were substrates for recombinant sialyltransferase enzymes from Camplyobacter jejuni and Neisseria meningitidis serogroup C. These resulting oligosialic acids have the same α(2-9) sialic acid repeat structure as Neisseria polysaccharide capsule with the addition of a conjugatable azide aglycon. The degree of polymerization (DP) of carbohydrate products was controlled by inclusion of the inhibitor CMP-9-deoxy-NeuNAc. Polymers with estimated DP?<?47 (median DP 25) and DP?<?100 (median DP 51) were produced. The receptor binding domain of the tetanus toxin protein (TetHc) was coupled as a carrier to the enzymatically synthesized oligosialic acids. Recombinant TetHc was derivatized with an alkyne squarate. Protein modification sites were determined by trypsin proteolysis followed by LC/MS-MSE analysis of peptides. Oligosialic acid azides were conjugated to modified TetHc via click chemistry. These chemoenzymatically prepared glycoconjugates were reactive in immunoassays with specific antibodies against either group C polysaccharide or TetHc. Sera of mice immunized with oligosialic acid-TetHc glycoconjugates contained much greater levels of polysaccharide-reactive IgG than the sera of control mice receiving unconjugated oligosialic acids. There was no apparent difference between glycoconjugates containing oligosaccharides of DP?<?47 and DP?<?100. These results suggest that chemoenzymatic synthesis may provide a viable method for making defined meningococcal vaccine candidates.  相似文献   
968.
The mammalian Atg16L1 protein consists of a coiled-coil domain and a tryptophan-aspartic acid (WD) repeat domain and is involved in the process of autophagy. However, the mechanisms underlying the effect of the Atg16L1 isoforms on autophagy remain to be elucidated in humans. In the present study, we successfully cloned three isoforms: Atg16L1-1, which contains the complete sequence; Atg16L1-2, which lacks all of exon 8; and Atg16L1-3, which lacks the coiled-coil domain. Subsequent experiments showed that the three isoforms of Atg16L1 were colocalised with MDC within the cells. Quantitative analysis of fluorescence showed that the average number of dots of Atg16L1-1 that colocalised with MDC was higher than those of Atg16L1-2 and Atg16L1-3. The three isoforms of Atg16L1 also colocalised with the lysosome within the cells. The average number of dots of Atg16L1-1 that colocalised with the lysosome was higher than those of Atg16L1-2 and Atg16L1-3. However, although Atg16L1-1 and Atg16L1-3 colocalised with the mitochondria, Atg16L1-2 did not. Functional analysis showed that overexpression of the three isoforms of Atg16L1 had a stimulative effect on autophagy. Significant increase in the number of positive LC3-II dots per cell was observed in Atg16L1-1 (70.2 ± 2.39 dots); this number was greater than those of the other two isoforms. Atg16L1-2 appeared to have an average of 59.25 ± 2.22 LC3-II dots per cell. Atg16L1-3 appeared to have the least number of LC3-II dots per cell (48.25 ± 2.22 dots) (P < 0.001). Our results indicated that the degree of autophagy varied with different Atg16L1 isoforms. The different domains of Atg16L1 played different roles in the process of autophagy. The coiled-coil domain of Atg16L1 was involved in the process of autophagy.  相似文献   
969.
Quercetin has been reported to protect testicular cells from oxidative damage induced by environmental chemicals. In this study, we isolated interstitial Leydig cells (ILCs) from immature rats, set-up ILCs culture, co-treated cells with atrazine (ATZ) and quercetin (QT), evaluated toxicity, and measured the expression levels of antioxidant enzymes and nuclear factor-kappaB (NF-κB) and levels of steroidogenic enzymes. ATZ decreased ILCs viability at concentrations higher than 10 μg/mL and increased reactive oxygen species, malondialdehyde (MDA), and glutathione levels. ATZ also increased glutathione peroxidase, glutathione reductase, and glutathione-S-transferase and decreased superoxide dismutase-1 (sod1) and superoxide dismutase-2 (sod2) messenger RNA (mRNA) levels which were prevented by QT. The changes in the MDA levels and lactate dehydrogenase leakage induced by ATZ (50 μg/mL) were also prevented on co-treatment with QT (50 μM). Furthermore, ATZ-induced 3β- and 17β-hydroxysteroid dehydrogenase activities and NF-κB-expressions at the mRNA and protein levels were also recovered to control value on co-treatment with QT. These data showed that QT protected against ATZ-induced ILCs toxicity by restoring the expression of NF-κB and steroidogenic activity and by preventing the oxidative stress.  相似文献   
970.
Calcimycin is a rare divalent cation specific ionophore antibiotic that has many biochemical and pharmaceutical applications. We have recently cloned and sequenced the Streptomyces chartreusis calcimycin biosynthesis gene cluster as well as identified the genes required for the synthesis of the polyketide backbone of calcimycin. Additional modifying or decorating enzymes are required to convert the polyketide backbone into the biologically active calcimycin. Using targeted mutagenesis of Streptomyces we were able to show that calM from the calcimycin biosynthesis gene cluster is required for calcimycin production. Inactivating calM by PCR targeting, caused high level accumulation of N-demethyl calcimycin. CalM in the presence of S-adenosyl-L-methionine converted N-demethyl calcimycin to calcimycin in vitro. The enzyme was determined to have a kinetic parameter of Km 276 μM, kcat 1.26 min−1 and kcat/Km 76.2 M−1 s−1. These results proved that CalM is a N-methyltransferase that is required for calcimycin biosynthesis, and they set the stage for generating much desired novel calcimycin derivatives by rational genetic and chemical engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号