首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6904篇
  免费   710篇
  国内免费   3篇
  7617篇
  2024年   11篇
  2023年   30篇
  2022年   109篇
  2021年   177篇
  2020年   85篇
  2019年   125篇
  2018年   155篇
  2017年   137篇
  2016年   206篇
  2015年   366篇
  2014年   380篇
  2013年   469篇
  2012年   635篇
  2011年   612篇
  2010年   397篇
  2009年   393篇
  2008年   466篇
  2007年   479篇
  2006年   431篇
  2005年   386篇
  2004年   401篇
  2003年   312篇
  2002年   289篇
  2001年   51篇
  2000年   32篇
  1999年   52篇
  1998年   71篇
  1997年   42篇
  1996年   31篇
  1995年   26篇
  1994年   27篇
  1993年   22篇
  1992年   17篇
  1991年   10篇
  1990年   15篇
  1989年   20篇
  1988年   12篇
  1987年   14篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   13篇
  1981年   12篇
  1980年   4篇
  1979年   4篇
  1977年   6篇
  1974年   11篇
  1973年   4篇
  1967年   3篇
排序方式: 共有7617条查询结果,搜索用时 15 毫秒
81.
82.
In wild-type yeast mitochondrial inheritance occurs early in the cell cycle concomitant with bud emergence. Cells lacking the PTC1 gene initially produce buds without a mitochondrial compartment; however, these buds later receive part of the mitochondrial network from the mother cell. Thus, the loss of PTC1 causes a delay, but not a complete block, in mitochondrial transport. PTC1 encodes a serine/threonine phosphatase in the high-osmolarity glycerol response (HOG) pathway. The mitochondrial inheritance delay in the ptc1 mutant is not attributable to changes in intracellular glycerol concentrations or defects in the organization of the actin cytoskeleton. Moreover, epistasis experiments with ptc1Δ and mutations in HOG pathway kinases reveal that PTC1 is not acting through the HOG pathway to control the timing of mitochondrial inheritance. Instead, PTC1 may be acting either directly or through a different signaling pathway to affect the mitochondrial transport machinery in the cell. These studies indicate that the timing of mitochondrial transport in wild-type cells is genetically controlled and provide new evidence that mitochondrial inheritance does not depend on a physical link between the mitochondrial network and the incipient bud site.  相似文献   
83.
Brzeziecki et al. 2016 (Journal of Vegetation Science 27: 460–467.) describe a decrease in population densities and proportion of younger individuals for several tree species in permanent research plots in the core zone of the Bia?owie?a National Park. They attribute insufficient tree recruitment inter alia to the strict protection. Although the authors performed a thorough analysis of tree population dynamics, the scales of the study mean that their far‐reaching conclusions on the causes and consequences of the lack of demographic equilibrium cannot be supported by the data. The inadequate spatial and temporal scales of the study did not allow for the observation of representative population dynamics. Furthermore, they did not compare the results obtained in the strictly protected area with known demographic dynamics of trees in surrounding managed forests or under other forms of nature conservation. Looking from the wider ecosystem perspective, it is clear that strict protection is not a cause for concern and, instead, that such a near‐natural forest manifests population dynamics at rather larger scales.  相似文献   
84.
Glycogen synthase plays a key role in regulating glycogen metabolism. In a search for regulators of glycogen synthase, a yeast two-hybrid study was performed. Two glycogen synthase-interacting proteins were identified in human skeletal muscle, glycogenin-1, and nebulin. The interaction with glycogenin was found to be mediated by the region of glycogenin which contains the 33 COOH-terminal amino acid residues. The regions in glycogen synthase containing both NH2- and COOH-terminal phosphorylation sites are not involved in the interaction. The core segment of glycogen synthase from Glu21 to Gly503 does not bind COOH-terminal fragment of glycogenin. However, this region of glycogen synthase binds full-length glycogenin indicating that glycogenin contains at least one additional interacting site for glycogen synthase besides the COOH-terminus. We demonstrate that the COOH-terminal fragment of glycogenin can be used as an effective high affinity reagent for the purification of glycogen synthase from skeletal muscle and liver.  相似文献   
85.
Cleavage of the intracellular carboxyl terminus of the N-methyl-d-aspartate (NMDA) receptor 2 subunit (NR2) by calpain regulates NMDA receptor function and localization. Here, we show that Fyn-mediated phosphorylation of NR2B controls calpain-mediated NR2B cleavage. In cultured neurons, calpain-mediated NR2B cleavage is significantly attenuated by blocking NR2B phosphorylation of Tyr-1336, but not Tyr-1472, via inhibition of Src family kinase activity or decreasing Fyn levels by small interfering RNA. In HEK cells, mutation of Tyr-1336 eliminates the potentiating effect of Fyn on calpain-mediated NR2B cleavage. The potentiation of NR2B cleavage by Fyn is limited to cell surface receptors and is associated with calpain translocation to plasma membranes during NMDA receptor activation. Finally, reducing full-length NR2B by calpain does not decrease extrasynaptic NMDA receptor function, and truncated NR1/2B receptors similar to those generated by calpain have electrophysiological properties matching those of wild-type receptors. Thus, the Fyn-controlled regulation of NMDA receptor cleavage by calpain may play critical roles in controlling NMDA receptor properties during synaptic plasticity and excitotoxicity.  相似文献   
86.

Introduction  

Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair.  相似文献   
87.
Bacterial populations produce dormant persister cells that are resistant to killing by all antibiotics currently in use, a phenomenon known as multidrug tolerance (MDT). Persisters are phenotypic variants of the wild type and are largely responsible for MDT of biofilms and stationary populations. We recently showed that a hipBA toxin/antitoxin locus is part of the MDT mechanism in Escherichia coli. In an effort to find additional MDT genes, an E. coli expression library was selected for increased survival to ampicillin. A clone with increased persister production was isolated and was found to overexpress the gene for the conserved aerobic sn-glycerol-3-phosphate dehydrogenase GlpD. The GlpD overexpression strain showed increased tolerance to ampicillin and ofloxacin, while a strain with glpD deleted had a decreased level of persisters in the stationary state. This suggests that GlpD is a component of the MDT mechanism. Further genetic studies of mutants affected in pathways involved in sn-glycerol-3-phosphate metabolism have led to the identification of two additional multidrug tolerance loci, glpABC, the anaerobic sn-glycerol-3-phosphate dehydrogenase, and plsB, an sn-glycerol-3-phosphate acyltransferase.  相似文献   
88.
Jose AM  Bany IA  Chase DL  Koelle MR 《Genetics》2007,175(1):93-105
Transient receptor potential (TRP) channel subunits form homotetramers that function in sensory transduction. Heteromeric channels also form, but their physiological subunit compositions and functions are largely unknown. We found a dominant-negative mutant of the C. elegans TRPV (vanilloid-type) subunit OCR-2 that apparently incorporates into and inactivates OCR-2 homomers as well as heteromers with the TRPV subunits OCR-1 and -4, resulting in a premature egg-laying defect. This defect is reproduced by knocking out all three OCR genes, but not by any single knockout. Thus a mixture of redundant heteromeric channels prevents premature egg laying. These channels, as well as the G-protein G alpha(o), function in neuroendocrine cells to promote release of neurotransmitters that block egg laying until eggs filling the uterus deform the neuroendocrine cells. The TRPV channel OSM-9, previously suggested to be an obligate heteromeric partner of OCR-2 in sensory neurons, is expressed in the neuroendocrine cells but has no detectable role in egg laying. Our results identify a specific set of heteromeric TRPV channels that redundantly regulate neuroendocrine function and show that a subunit combination that functions in sensory neurons is also present in neuroendocrine cells but has no detectable function in these cells.  相似文献   
89.
The methyl group from S-adenosylmethionine (AdoMet) is transferred into hemoglobin without any evident involvement of an enzyme. There are multiple sites for incorporation of the methyl group into hemoglobin, since both and chains are methylated. The methyl linkages formed in hemoglobin are stable at both alkaline and acidicpH, and the reaction occurs optimally at slightly below neutralpH. Only a small fraction (2%) of hemoglobin tetramers are methylated under the conditions tested. Acid hydrolysis of [3H-methyl]-labeled hemoglobin and determination of phenylisothiocynate derivatives yields N-methyl lysine, which accounts for about one-half of the incorporated [3H-methyl] radioactivity. Other amino acids are methylated as well, with much of the remaining radioactivity being distributed among one or more of the side chains of histidine, cysteine, and arginine. Methyl group transfer to hemoglobin from AdoMet is slow and inefficient (k cat/K m5×10–2), but the reaction velocity tends toward a plateau with increasing AdoMet concentration in a manner suggesting that saturable binding of AdoMet onto hemoglobin is involved in methyl transfer. The velocity of hemoglobin methylation is inhibited by S-adenosylhomocysteine, the known end-product inhibitor of methyltransferases, a further indication that methyl group transfer involves binding and catalysis by a specific site (or sites) in the hemoglobin molecule. These observations may help to explain the known existence of methylated hemoglobins in erythrocyte.  相似文献   
90.
Migratory behaviors such as the timing and duration of migration are genetically inherited and can be under strong natural selection, yet we still know very little about the specific genes or molecular pathways that control these behaviors. Studies in candidate genes Clock and Adcyap1 have revealed that both of these loci can be significantly correlated with migratory behaviors in birds, though observed relationships appear to vary across species. We investigated geographic genetic structure of Clock and Adcyap1 in four populations of blackpoll warblers (Setophaga striata), a Neotropical–Nearctic migrant that exhibits geographic variation in migratory timing and duration across its boreal breeding distribution. Further, we used data on migratory timing and duration, obtained from light‐level geolocator trackers to investigate candidate genotype–phenotype relationships at the individual level. While we found no geographic structure in either candidate gene, we did find evidence that candidate gene lengths are correlated with five of the six migratory traits. Maximum Clock allele length was significantly and negatively associated with spring arrival date. Minimum Adcyap1 allele length was significantly and negatively associated with spring departure date and positively associated with fall arrival date at the wintering grounds. Additionally, we found a significant interaction between Clock and Adcyap1 allele lengths on both spring and fall migratory duration. Adcyap1 heterozygotes also had significantly shorter migration duration in both spring and fall compared to homozygotes. Our results support the growing body of evidence that Clock and Adcyap1 allele lengths are correlated with migratory behaviors in birds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号