首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6863篇
  免费   710篇
  国内免费   3篇
  7576篇
  2024年   11篇
  2023年   30篇
  2022年   109篇
  2021年   177篇
  2020年   83篇
  2019年   125篇
  2018年   155篇
  2017年   137篇
  2016年   202篇
  2015年   366篇
  2014年   378篇
  2013年   467篇
  2012年   629篇
  2011年   610篇
  2010年   397篇
  2009年   392篇
  2008年   466篇
  2007年   479篇
  2006年   430篇
  2005年   384篇
  2004年   400篇
  2003年   311篇
  2002年   286篇
  2001年   50篇
  2000年   29篇
  1999年   49篇
  1998年   71篇
  1997年   42篇
  1996年   30篇
  1995年   25篇
  1994年   27篇
  1993年   22篇
  1992年   17篇
  1991年   10篇
  1990年   15篇
  1989年   20篇
  1988年   12篇
  1987年   14篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   3篇
  1979年   3篇
  1977年   6篇
  1974年   11篇
  1973年   4篇
  1967年   3篇
排序方式: 共有7576条查询结果,搜索用时 15 毫秒
51.
Protein kinase C-associated kinase (PKK) is a recently described kinase of unknown function that was identified on the basis of its specific interaction with PKC beta. PKK contains N-terminal kinase and C-terminal ankyrin repeats domains linked to an intermediate region. Here we report that the kinase domain of PKK is highly homologous to that of two mediators of nuclear factor-kappa B (NF-kappa B) activation, RICK and RIP, but these related kinases have different C-terminal domains for binding to upstream factors. We find that expression of PKK, like RICK and RIP, induces NF-kappa B activation. Mutational analysis revealed that the kinase domain of PKK is essential for NF-kappa B activation, whereas replacement of serine residues in the putative activation loop did not affect the ability of PKK to activate NF-kappa B. A catalytic inactive PKK mutant inhibited NF-kappa B activation induced by phorbol ester and Ca(2+)-ionophore, but it did not block that mediated by tumor necrosis factor alpha, interleukin-1 beta, or Nod1. Inhibition of NF-kappa B activation by dominant negative PKK was reverted by co-expression of PKC beta I, suggesting a functional association between PKK and PKC beta I. PKK-mediated NF-kappa B activation required IKK alpha and IKK beta but not IKK gamma, the regulatory subunit of the IKK complex. Moreover, NF-kappa B activation induced by PKK was not inhibited by dominant negative Bimp1 and proceeded in the absence of Bcl10, two components of a recently described PKC signaling pathway. These results suggest that PKK is a member of the RICK/RIP family of kinases, which is involved in a PKC-activated NF-kappa B signaling pathway that is independent of Bcl10 and IKK gamma.  相似文献   
52.
53.
A leading theory regarding the pathogenesis of biliary atresia (BA) is that bile duct injury is initiated by a virus infection, followed by an autoimmune response targeting bile ducts. In experimental models of autoimmune diseases, B cells have been shown to play an important role. The aim of this study was to determine the role of B cells in the development of biliary obstruction in the Rhesus rotavirus (RRV)-induced mouse model of BA. Wild-type (WT) and B cell-deficient (Ig-α-/-) mice received RRV shortly after birth. Ig-α-/- RRV-infected mice had significantly increased disease-free survival rate compared to WT RRV-infected BA mice (76.8% vs. 17.5%). In stark contrast to the RRV-infected BA mice, the RRV-infected Ig-α-/- mice did not have hyperbilirubinemia or bile duct obstruction. The RRV-infected Ig-α-/- mice had significantly less liver inflammation and Th1 cytokine production compared to RRV-infected WT mice. In addition, Ig-α-/- mice had significantly increased numbers of regulatory T cells (Tregs) at baseline and after RRV infection compared to WT mice. However, depletion of Tregs in Ig-α-/- mice did not induce biliary obstruction, indicating that the expanded Tregs in the Ig-α-/- mice were not the sole reason for protection from disease. Conclusion: B cell deficient Ig-α-/- mice are protected from biliary obstruction in the RRV-induced mouse model of BA, indicating a primary role of B cells in mediating disease pathology. The mechanism of protection may involve lack of B cell antigen presentation, which impairs T-cell activation and Th1 inflammation. Immune modulators that inhibit B cell function may be a new strategy for treatment of BA.  相似文献   
54.
In pursuit of potent and selective sphingosine-1-phosphate receptor agonists, we have utilized previously reported phenylamide and phenylimidazole scaffolds to explore extensive side-chain modifications to generate new molecular entities. A number of designed molecules demonstrate good selectivity and excellent in vitro and in vivo potency in both mouse and rat models. Oral administration of the lead molecule 11c (PPI-4667) demonstrated potent and dose-responsive lymphopenia.  相似文献   
55.
56.
Hanna M  Ball LG  Tong AH  Boone C  Xiao W 《Mutation research》2007,625(1-2):164-176
POL32 encodes a non-essential subunit of Polδ and plays a role in Polδ processivity and DNA repair. In order to understand how Pol32 is involved in these processes, we performed extensive genetic analysis and demonstrated that POL32 is required for Polζ-mediated translesion synthesis, but not for Polη-mediated activity. Unlike Polζ, inactivation of Pol32 does not result in decreased spontaneous mutagenesis, nor does it limit genome instability in the absence of the error-free postreplication repair pathway. In contrast, inactivation of Pol32 results in an increased rate of replication slippage and recombination. A genome-wide synthetic lethal screen revealed that in the absence of Pol32, homologous recombination repair and cell cycle checkpoints play crucial roles in maintaining cell survival and growth. These results are consistent with a model in which Pol32 functions as a coupling factor to facilitate a switch from replication to translesion synthesis when Polδ encounters replication-blocking lesions. When Pol32 is absent, the S-phase checkpoint complex Mrc1–Tof1 becomes crucial to stabilize the stalled replication fork and recruit Top3 and Sgs1. Lack of any of the above activities will cause double strand breaks at or near the replication fork that require recombination as well as Rad9 for cell survival.  相似文献   
57.
Leukotriene A4 (LTA4) hydrolase catalyzes a rate-limiting final biosynthetic step of leukotriene B4 (LTB4), a potent lipid chemotactic agent and proinflammatory mediator. LTB4 has been implicated in the pathogenesis of various acute and chronic inflammatory diseases, and thus LTA4 hydrolase is regarded as an attractive therapeutic target for anti-inflammation. To facilitate identification and optimization of LTA4 hydrolase inhibitors, a specific and efficient assay to quantify LTB4 is essential. This article describes the development of a novel 384-well homogeneous time-resolved fluorescence assay for LTB4 (LTB4 HTRF assay) and its application to establish an HTRF-based LTA4 hydrolase assay for lead optimization. This LTB4 HTRF assay is based on competitive inhibition and was established by optimizing the reagent concentration, buffer composition, incubation time, and assay miniaturization. The optimized assay is sensitive, selective, and robust, with a Z' factor of 0.89 and a subnanomolar detection limit for LTB4. By coupling this LTB4 HTRF assay to the LTA4 hydrolase reaction, an HTRF-based LTA4 hydrolase assay was established and validated. Using a test set of 16 LTA4 hydrolase inhibitors, a good correlation was found between the IC50 values obtained using LTB4 HTRF with those determined using the LTB enzyme-linked immunoassay (R = 0.84). The HTRF-based LTA4 hydrolase assay was shown to be an efficient and suitable assay for determining compound potency and library screening to guide the development of potent inhibitors of LTA4 hydrolase.  相似文献   
58.
59.
Choline availability influences long-term memory in concert with changes in the spatial organization and morphology of septal neurons, however little is known concerning the effects of choline on the hippocampus, a region of the brain also important for memory performance. Pregnant rats on gestational day 12 were fed a choline control (CT), choline supplemented (CS), or choline deficient (CD) diet for 6 days and fetal brain slices were prepared on embryonic day 18 (El8). The hippocampus in these brain slices was studied for the immunohistochemical localization of the growth-related proteins transforming growth factor beta type 1 (TGF1) and GAP43, the cytoskeletal proteins vimentin and microtubule associated protein type 1 (MAP1), and the neuronal cell marker neuron specific enolase (NSE). In control hippocampus, there was weak expression of TGF1 and vimentin proteins, but moderately intense expression of MAP1 protein. These proteins were not homogeneously distributed, but were preferentially localized to cells with large cell bodies located in the central (CA1–CA3) region of the hippocampus, and to the filamentous processes of small cells in the fimbria region. Feeding a choline-supplemented diet decreased, whereas a choline-deficient diet increased the intensity of immunohistochemical labeling for these proteins in El8 hippocampus. GAP43 and NSE were localized to peripheral nervous tissue but not hippocampus, indicating that the maturation of axons and neurite outgrowth in embryonic hippocampus were unaffected by the availability of choline in the diet. These data suggest that the availability of choline affects the differentiation of specific regions of developing hippocampus.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号