首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6884篇
  免费   711篇
  国内免费   3篇
  7598篇
  2024年   11篇
  2023年   33篇
  2022年   109篇
  2021年   178篇
  2020年   86篇
  2019年   125篇
  2018年   155篇
  2017年   137篇
  2016年   202篇
  2015年   366篇
  2014年   379篇
  2013年   467篇
  2012年   629篇
  2011年   611篇
  2010年   397篇
  2009年   392篇
  2008年   466篇
  2007年   479篇
  2006年   431篇
  2005年   384篇
  2004年   400篇
  2003年   311篇
  2002年   286篇
  2001年   51篇
  2000年   29篇
  1999年   49篇
  1998年   71篇
  1997年   42篇
  1996年   30篇
  1995年   25篇
  1994年   27篇
  1993年   22篇
  1992年   22篇
  1991年   12篇
  1990年   15篇
  1989年   21篇
  1988年   12篇
  1987年   14篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   3篇
  1979年   3篇
  1977年   6篇
  1974年   11篇
  1973年   4篇
  1967年   3篇
排序方式: 共有7598条查询结果,搜索用时 0 毫秒
91.
Targeting of axons and dendrites to particular synaptic laminae is an important mechanism by which precise patterns of neuronal connectivity are established. Although axons target specific laminae during development, dendritic lamination has been thought to occur largely by pruning of inappropriately placed arbors. We discovered by in vivo time-lapse imaging that retinal ganglion cell (RGC) dendrites in zebrafish show growth patterns implicating dendritic targeting as a mechanism for contacting appropriate synaptic partners. Populations of RGCs labeled in transgenic animals establish distinct dendritic strata sequentially, predominantly from the inner to outer retina. Imaging individual cells over successive days confirmed that multistratified RGCs generate strata sequentially, each arbor elaborating within a specific lamina. Simultaneous imaging of RGCs and subpopulations of presynaptic amacrine interneurons revealed that RGC dendrites appear to target amacrine plexuses that had already laminated. Dendritic targeting of prepatterned afferents may thus be a novel mechanism for establishing proper synaptic connectivity.  相似文献   
92.
Pctaire1, a member of the cyclin-dependent kinase (Cdk)-related family, has recently been shown to be phosphorylated and regulated by Cdk5/p35. Although Pctaire1 is expressed in both neuronal and non-neuronal cells, its precise functions remain elusive. We performed a yeast two-hybrid screen to identify proteins that interact with Pctaire1. N-Ethylmaleimide-sensitive fusion protein (NSF), a crucial factor in vesicular transport and membrane fusion, was identified as one of the Pctaire1 interacting proteins. We demonstrate that the D2 domain of NSF, which is required for the oligomerization of NSF subunits, binds directly to and is phosphorylated by Pctaire1 on serine 569. Mutation of this phosphorylation site on NSF (S569A) augments its ability to oligomerize. Moreover, inhibition of Pctaire1 activity by transfecting its kinase-dead (KD) mutant into COS-7 cells enhances the self-association of NSF. Interestingly, Pctaire1 associates with NSF and synaptic vesicle-associated proteins in adult rat brain. To investigate whether Pctaire1 phosphorylation of NSF is involved in regulation of Ca(2+)-dependent exocytosis, we examined the effect of expressing Pctaire1 or NSF phosphorylation mutants on the regulated secretion of growth hormone from PC12 cells. Interestingly, expression of either Pctaire1-KD or NSF-S569A in PC12 cells significantly increases high K(+)-stimulated growth hormone release. Taken together, our findings provide the first demonstration that Pctaire1 phosphorylation of NSF regulates the ability of NSF to oligomerize, implicating an unexpected role of this kinase in modulating exocytosis. These findings open a new avenue of research in studying the functional roles of Pctaire1 in the nervous system.  相似文献   
93.
Quorum sensing and DNA release in bacterial biofilms   总被引:1,自引:0,他引:1  
The multicellular behavior of bacteria has been the subject of much recent interest. This behavior includes coordinated control of virulence, luminescence, competence and biofilm formation; each of these appears to be regulated or influenced by quorum sensing. An understanding of what biofilms constitute, and how they develop, is emerging. It is clear that biofilm formation is a carefully orchestrated process that is dependent on quorum sensing. Somewhat surprisingly, several independent observations have noted an important role for DNA in the structure of biofilms. Recent studies describe a mechanism for linking DNA release to quorum sensing, providing a possible mechanism for the coordinated release of DNA, and its integration into a biofilm. A review of the literature reveals that similar observations have been made for biofilms of both Gram-positive and Gram-negative organisms. Further study will determine whether this is a general trend, however.  相似文献   
94.
95.
BackgroundThe mortality of the SARS-CoV-2 virus (COVID-19) has been associated with a pulmonary inflammatory response resulting in hypoxemia and rapid clinical decline. PREVENT is an ongoing prospective multicenter Phase II randomized controlled trial where patients hospitalized with COVID-19 pneumonia are randomized to low dose radiation therapy (RT) versus control (clinicaltrials.gov, NCT04466683). We describe the inpatient onboarding process of the center contributing the largest number of patients to this trial.Materials and methodsCOVID-19 hospital admissions were attained by the clinical research manager and radiation oncologist daily. Text message contact was made with infectious disease, critical care, and nursing staff with reciprocal discussion of the trial protocol and approval for virtual consulting of the patient. Witnessed informed consent was obtained first by telephone and later in person. Simulation and treatment (performed without a computer plan) was performed on a linear accelerator with one personal protective equipment-protected therapist moving in and out of the treatment room, and a second therapist manning the console. Following on-site dose calculation by physics, the radiation oncologist approved the fields prior to treatment delivery.ResultsBetween August 28, 2020 and October 6, 2020, the first 10 enrolled patients on this multicenter trial were randomized and treated at our institution; no team member (research staff, radiation oncology) contracted COVID-19 while employing this protocol.ConclusionThis represents the first published protocol to address efficient and safe recruitment of COVID-19 patients for a radiation oncology trial, serving as a model for conducting recruitment of COVID-19 patients for clinical trials.  相似文献   
96.
97.
We developed and tested a method to produce DNA standards and controls for quantitative PCR by designing and performing partial hybridization of long oligonucleotides before double stranded DNA fragments were synthesized and subsequently amplified by conventional PCR. This approach does not require any natural DNA template. Applications include the production of standards, which cannot be easily produced from DNA extracted from bacteria or plants.  相似文献   
98.
Increased endogenous glucose production (EGP) predominantly from the liver is a characteristic feature of type 2 diabetes, which positively correlates with fasting hyperglycemia. Gluconeogenesis is the biochemical pathway shown to significantly contribute to increased EGP in diabetes. Fructose-1,6-bisphosphatase (FBPase) is a regulated enzyme in gluconeogenesis that is increased in animal models of obesity and insulin resistance. However, whether a specific increase in liver FBPase can result in increased EGP has not been shown. The objective of this study was to determine the role of upregulated liver FBPase in glucose homeostasis. To achieve this goal, we generated human liver FBPase transgenic mice under the control of the transthyretin promoter, using insulator sequences to flank the transgene and protect it from site-of-integration effects. This resulted in a liver-specific model, as transgene expression was not detected in other tissues. Mice were studied under the following conditions: 1) at two ages (24 wk and 1 yr old), 2) after a 60% high-fat diet, and 3) when bred to homozygosity. Hemizygous transgenic mice had an approximately threefold increase in total liver FBPase mRNA with concomitant increases in FBPase protein and enzyme activity levels. After high-fat feeding, hemizygous transgenics were glucose intolerant compared with negative littermates (P < 0.02). Furthermore, when bred to homozygosity, chow-fed transgenic mice showed a 5.5-fold increase in liver FBPase levels and were glucose intolerant compared with negative littermates, with a significantly higher rate of EGP (P < 0.006). This is the first study to show that FBPase regulates EGP and whole body glucose homeostasis in a liver-specific transgenic model. Our homozygous transgenic model may be useful for testing human FBPase inhibitor compounds with the potential to treat patients with type 2 diabetes.  相似文献   
99.
The extensive buildup of phytoplankton biomass in the Ross Sea conflicts with the view that high rates of herbivory occur in all regions of the Southern Ocean. Nano and microplanktonic consumers comprise a significant fraction of total plankton biomass; however, the importance of grazing remains uncertain in the Ross Sea. Microzooplankton ingestion of solitary and colonial cells of Phaeocystis antarctica were calculated using a novel live-staining fluorescently-labeled algae method. Different morphotypes of P. antarctica were stained different colors, mixed, and observed inside Euplotes to determine their feeding preference. The blue (7-aminocoumarin) (CMAC) stain was used on the colonies and the green (CMFDA) CellTracker Probe was used on solitary cells. Both morphotypes can be seen inside the food vacuoles of the ciliate, supporting the idea that microzooplankton are capable of ingesting cells within the colonial matrix. This suggests that P. antarctica colonies enter the microbial loop in the Ross Sea before sedimentation.  相似文献   
100.
Podicipediformes is a cosmopolitan clade of foot‐propelled diving birds that, despite inhabiting marine and lacustrine environments, have a poor fossil record. In this contribution, we describe three new grebe fossils from the diatomite beds of the Late Miocene Truckee Formation (10.2 ± 0.2 Ma) of Nevada (USA). Two postcranial skeletons and an associated set of wing elements indicate that at least two distinct grebe species occupied the large, shallow Lake Truckee during the Miocene. Phylogenetic analysis of morphological data supports a basal divergence between a clade uniting the dabchicks (Tachybaptus, Limnodytes, Poliocephalus) and a clade uniting Podilymbus, Rollandia, Podiceps and Aechmophorus. Missing data, combined with a paucity of informative skeletal characters, make it difficult to place the Truckee grebes within either of these major clades. Given the weak projection of the cnemial crests compared with extant grebes, it also remains plausible that these specimens represent stem lineage grebes. Although more material is needed to resolve the phylogenetic position of the Truckee grebes, our analysis offers insight into the tempo of grebe evolution by placing the Miocene taxon Thiornis sociata within the dabchick clade. Thiornis sociata provides a minimum age calibration of 8.7 Ma for the basal divergence among dabchicks. Based on the recovery of a nonmonophyletic Tachybaptus and placement of the Western Hemisphere ‘Tachybaptusdominicus as the basal member of the otherwise exclusively Eastern Hemisphere dabchick clade, we resurrect the genus Limnodytes for this extant species (Limnodytes dominicus). Our results also nest the large, long‐necked Aechmophorus grebes within the genus Podiceps, as the sister taxon to Podiceps major.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号