首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   26篇
  2023年   3篇
  2022年   6篇
  2021年   21篇
  2020年   7篇
  2019年   16篇
  2018年   8篇
  2017年   13篇
  2016年   25篇
  2015年   27篇
  2014年   39篇
  2013年   45篇
  2012年   50篇
  2011年   73篇
  2010年   69篇
  2009年   39篇
  2008年   19篇
  2007年   18篇
  2006年   16篇
  2005年   8篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有528条查询结果,搜索用时 390 毫秒
51.
Nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is responsible for sepsis-induced hypotension and plays a major contributory role in the ensuing multiorgan failure. The present study aimed to elucidate the role of endothelial NO in lipopolysaccharide (LPS)-induced iNOS expression, in isolated rat aortic rings. Exposure to LPS (1 mug/ml, 5 h) resulted in a reversal of phenylephrine precontracted tone in aortic rings (70.7 +/- 3.2%). This relaxation was associated with iNOS expression and NF-kappaB activation. Positive immunoreactivity for iNOS protein was localized in medial and adventitial layers of LPS-treated aortic rings. Removal of the endothelium rendered aortic rings resistant to LPS-induced relaxation (8.9 +/- 4.5%). Western blotting of these rings demonstrated an absence of iNOS expression. However, treatment of endothelium-denuded rings with the NO donor, diethylamine-NONOate (0.1 mum), restored LPS-induced relaxation (61.6 +/- 6.6%) and iNOS expression to levels comparable with arteries with intact endothelium. Blockade of endothelial NOS (eNOS) activation using geldanamycin and radicicol, inhibitors of heat shock protein 90, in endothelium-intact arteries suppressed both LPS-induced relaxation and LPS-induced iNOS expression (9.0 +/- 8.0% and 2.0 +/- 6.2%, respectively). Moreover, LPS treatment (12.5 mg/kg, intravenous, 15 h) of wild-type mice resulted in profound elevation of plasma [NO(x)] measurements that were reduced by approximately 50% in eNOS knock-out animals. Furthermore, LPS-induced changes in vascular reactivity and iNOS expression evident in wild-type tissues were profoundly suppressed in tissues taken from eNOS knockout animals. Together, these data suggest that eNOS-derived NO, in part via activation of NF-kappaB, regulates iNOS-induction by LPS. This study provides the first demonstration of a proinflammatory role of vascular eNOS in sepsis.  相似文献   
52.
Two targeted chromogenic octapeptide combinatorial libraries, comprised of 38 pools each containing 361 different peptides, were used to analyze the enzyme/substrate interactions of five plasmepsins. The first library (P1 library) was based on a good synthetic aspartic peptidase substrate [Westling, J., Cipullo, P., Hung, S. H., Saft, H., Dame, J. B., and Dunn, B. M. (1999) Protein Sci. 8, 2001-2009; Scarborough, P. E., and Dunn, B. M. (1994) Protein Eng. 7, 495-502] and had the sequence Lys-Pro-(Xaa)-Glu-P1*Nph-(Xaa)-Leu. The second library (P1' library) incorporated results with the plasmepsins from the first library and had the sequence Lys-Pro-Ile-(Xaa)-Nph*P1'-Gln-(Xaa). In both cases, P1 and P1' were fixed residues for a given peptide pool, where Nph was a para-nitrophenylalanine chromogenic reporter and Xaa was a mixture of 19 different amino acids. Kinetic assays monitoring the rates of cleavage of these libraries revealed the optimal P1 and P1' residues for the five plasmepsins as hydrophobic substitutions. Extended specificity preferences were obtained utilizing liquid chromatography-mass spectrometry (LC-MS) to analyze the cleavage products produced by enzyme-catalyzed digestion of the best pools of each peptide library. LC-MS analysis of the P1-Phe and P1'-Phe pools revealed the favored amino acids at the P3, P2, P2', and P3' positions. These analyses have provided new insights on the binding preferences of malarial digestive enzymes that were used to design specific methyleneamino peptidomimetic inhibitors of the plasmepsins. Some of these compounds were potent inhibitors of the five plasmepsins, and their possible binding modes were analyzed by computational methods.  相似文献   
53.
Nayar S  Brahma A  Barat B  Bhattacharyya D 《Biochemistry》2004,43(31):10212-10223
UDP-galactose 4-epimerase serves as a prototype model of class II oxidoreductases that use bound NAD as a cofactor. This enzyme from Kluyveromyces fragilis is a homodimer with a molecular mass of 75 kDa/subunit. Continuous monitoring of the conversion of UDP-galactose (UDP-gal) to UDP-glucose (UDP-glu) by the epimerase in the presence of the coupling enzyme UDP-glucose dehydrogenase and NAD shows a kinetic lag of up to 80 s before a steady state is reached. The disappearance of the lag follows first-order kinetics (k = 3.22 x 10(-2) s(-1)) at 25 degrees C at enzyme and substrate concentrations of 1.0 nM and 1 mM, respectively. The observed lag is not due to factors such as insufficient activity of the coupling enzyme, association or dissociation or incomplete recruitment of NAD by epimerase, product activation, etc., but was a true expression of the activity of the prepared enzyme. Dissociation of the bound ligand(s) by heat followed by analysis with reverse-phase HPLC, TLC, UV-absorption spectrometry, mass spectrometry, and NMR showed that in addition to 1.78 mol of NAD/dimer, the epimerase also contains 0.77 mol of 5'-UMP/dimer. The latter is a strong competitive inhibitor. Preincubation of the epimerase with the substrate UDP-gal or UDP-glu replaces the inhibitor and also abolishes the lag, which reappeared after the enzyme was treated with 5'-UMP. The lag was not observed as long as the cells were in the growing phase and galactose in the growth medium was limiting, suggesting that association with 5'-UMP is a late log-phase phenomenon. The stoichiometry and conserved amino acid sequence around the NAD binding site of multimeric class I (classical dehydrogenases) and class II oxidoreductases, as reported in the literature, have been compared. It shows that each subunit is independently capable of being associated with one molecule of NAD, suggestive of two NAD binding sites of epimerase per dimer.  相似文献   
54.
In the present study, we investigated the antitumour efficacy of vanadium in a defined rodent model of experimental hepatocarcinogenesis. Hepatic preneoplasia was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal injection of diethylnitrosamine (DEN) (200 mg/kg body weight) followed by promotion with phenobarbital (PB). The levels of modified DNA bases 8-hydroxy-2′-deoxyguanosine (8-OHdG), a potential marker involved in the initiation of carcinogenesis, were measured by high-performance liquid chromatography, whereas tissue trace element status and expression of metallothionein (MT), a Cu–Zn metalloprotein associated with neoplastic cell growth and subsequent development of premalignant phenotype of the cell, were studied by energy-dispersive X-ray fluorescence spectrometry and enzyme-coupled immunohistochemistry, respectively. There was a significant and steady elevation of modified bases (8-OHdG) along with substantial increase in MT immunoexpression and disturbance in trace element homeostasis following DEN exposure. Supplementation of vanadium at a dose of 0.5 ppm for four consecutive weeks strictly abated the formation of 8-OHdG (P < 0.0001; 81.28%) in preneoplastic rat liver. In a long-term DEN plus PB regimen, vanadium was able to limit in situ MT expression with a concomitant decrease in MT immunoreactivity (P < 0.05). Furthermore, vanadium treatment throughout the study restored hepatic levels of essential trace elements and decreased nodular incidence (58.34%) and nodule multiplicity (P < 0.001; 66.89%) in rats treated with DEN plus PB. Taken together, the study provides evidence in support of the chemopreventive potential of vanadium in limiting neoplastic transformation during the preneoplastic stages of hepatocarcinogenesis in rats.  相似文献   
55.
Four antagonists bacteria namely, Bacillus megaterium MB3, B. subtilis MB14, B. subtilis MB99 and B. amyloliquefaciens MB101 were able to produce chitinase, β-1,3-glucanase and protease in different range with the presence of Rhizoctonia solani cell wall as a carbon source. Amplification of chitinase (chiA) gene of 270 bp and β-1, 3-glucanase gene of 415 bp was given supportive evidence at molecular level of antibiosis. After in vitro screening, all antagonists were tested against R. solani under greenhouse conditions. Root treatment of Bacillus strains showed superior defense during pathogen suppression in terms of chitinase, glucanase, peroxidase, poly phenol oxidase, phenylalanine ammonia-lyase activity and total phenolic content in leaves of tomato. All these enzymes accumulated high in tomato leaves as compared to roots. Pathogenesis-related proteins and defense-related enzymes accumulation was directly correlated with plant protection and greenhouse results indicated that B. amyloliquefaciens MB101- and B. subtilis MB14-treated plants offered 69.76 and 61.51 % disease reductions, respectively, over the infected control. These results established that these organisms have the potential to act as biocontrol agents. This study could be highlighted a mutual importance of liquid formulation of antagonistic Bacillus spp. against root associated sclerotia former pathogen R. solani.  相似文献   
56.
Autophagy is triggered by the intracellular bacterial sensor NOD2 (nucleotide-binding, oligomerization domain 2) as an anti-bacterial response. Defects in autophagy have been implicated in Crohn's disease susceptibility. The molecular mechanisms of activation and regulation of this process by NOD2 are not well understood, with recent studies reporting conflicting requirements for RIP2 (receptor-interacting protein kinase 2) in autophagy induction. We examined the requirement of NOD2 signaling mediated by RIP2 for anti-bacterial autophagy induction and clearance of Salmonella typhimurium in the intestinal epithelial cell line HCT116. Our data demonstrate that NOD2 stimulates autophagy in a process dependent on RIP2 tyrosine kinase activity. Autophagy induction requires the activity of the mitogen-activated protein kinases MEKK4 and p38 but is independent of NFκB signaling. Activation of autophagy was inhibited by a PP2A phosphatase complex, which interacts with both NOD2 and RIP2. PP2A phosphatase activity inhibited NOD2-dependent autophagy but not activation of NFκB or p38. Upon stimulation of NOD2, the phosphatase activity of the PP2A complex is inhibited through tyrosine phosphorylation of the catalytic subunit in a process dependent on RIP2 activity. These findings demonstrate that RIP2 tyrosine kinase activity is not only required for NOD2-dependent autophagy but plays a dual role in this process. RIP2 both sends a positive autophagy signal through activation of p38 MAPK and relieves repression of autophagy mediated by the phosphatase PP2A.  相似文献   
57.
58.
Expansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C., Chan, N. L., Gu, L., and Li, G. M. (2009) Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16, 869-875), suggesting the involvement of an additional component for (CTG)(n) HPR. To identify this activity, a functional in vitro HPR assay was used to screen partially purified HeLa nuclear fractions for their ability to stimulate (CTG)(n) HPR. We demonstrate here that the stimulating activity is the Werner syndrome protein (WRN). Although WRN contains both a 3'→5' helicase activity and a 3'→5' exonuclease activity, the stimulating activity was found to be the helicase activity, as a WRN helicase mutant failed to enhance (CTG)(n) HPR. Consistently, WRN efficiently unwound large (CTG)(n) hairpins and promoted DNA polymerase δ-catalyzed DNA synthesis using a (CTG)(n) hairpin as a template. We, therefore, conclude that WRN stimulates (CTG)(n) HPR on the template DNA strand by resolving the hairpin so that it can be efficiently used as a template for repair or replicative synthesis.  相似文献   
59.
60.
Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号