首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   21篇
  198篇
  2023年   2篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   7篇
  2015年   6篇
  2014年   12篇
  2013年   9篇
  2012年   18篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   13篇
  2007年   8篇
  2006年   13篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   10篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1967年   1篇
  1948年   1篇
  1930年   1篇
排序方式: 共有198条查询结果,搜索用时 10 毫秒
61.
Sensory rhodopsin II (NpSRII) is a phototaxis receptor of Natronomonas pharaonis that performs its function in complex with its cognate transducer (NpHtrII). Upon light activation NpSRII triggers by means of NpHtrII a signal transduction chain homologous to the two component system in eubacterial chemotaxis. The D75N mutant of NpSRII, which lacks the blue-shifted M intermediate and therefore exhibits a significantly faster photocycle compared to the wild-type, mediates normal phototaxis responses demonstrating that deprotonation of the Schiff base is not a prerequisite for transducer activation. Using site-directed spin labeling and time resolved electron paramagnetic-resonance spectroscopy, we show that the mechanism revealed for activation of the wild-type complex, namely an outward tilt motion of the cytoplasmic part of the receptor helix F and a concomitant rotation of the transmembrane transducer helix TM2, is also valid for the D75N variant. Apparently, the D75N mutation shifts the ground state conformation of NpSRII-D75N and its cognate transducer into the direction of the signaling state.  相似文献   
62.
During the development of neurons, the microtubule-associated tau proteins show a graded proximo-distal distribution in axons. In tauopathies such as Alzheimer's disease, tau accumulates in the somatodendritic compartment. To scrutinize the determinants of tau's distribution and motion, we constructed photoactivatable green fluorescent protein (GFP)-tagged tau fusion proteins and recorded their distribution after focal activation in living cells. Simulation showed that the motion of tau was compatible with diffusion/reaction as opposed to active transport/reaction. Effective diffusion constants of 0.7–0.8 μm2/second were calculated in neurites of PC12 cells and primary cortical neurons. Furthermore, tau's amino terminal projection domain mediated binding and enrichment of tau at distal neurites indicating that the tip of a neurite acts as an adsorber trapping tau protein. Treatment with taxol, incorporation of disease-related tau modifications, experimentally induced hyperphosphorylation and addition of preaggregated amyloid β peptides (Aβ) increased the effective diffusion constant compatible with a decreased binding to microtubules. Distal enrichment was present after taxol treatment but was suppressed at disease-relevant conditions. The data suggest that (i) dynamic binding of tau to microtubules and diffusion along microtubules and (ii) trapping at the tip of a neurite both contribute to its distribution during development and disease.  相似文献   
63.
64.
65.
66.
Lipid-protein interactions are known to play a crucial role in structure and physiological activity of integral membrane proteins. However, current technology for membrane protein purification necessitates extraction from the membrane into detergent micelles. Also, due to experimental protocols, most of the data available for membrane proteins is obtained using detergent-solubilized samples. Stable solubilization of membrane proteins is therefore an important issue in biotechnology as well as in biochemistry and structural biology. An understanding of solubilization effects on structural and functional properties of specific proteins is of utmost relevance for the evaluation and interpretation of experimental results. In this study, a comparison of structural and kinetic data obtained for the archaebacterial photoreceptor/transducer complex from Natronomonas pharaonis (NpSRII/NpHtrII) in detergent-solubilized and lipid-reconstituted states is presented. Laser flash photolysis, fluorescence spectroscopy, and electron paramagnetic resonance spectroscopy data reveal considerable influence of solubilization on the photocycle kinetics of the receptor protein and on the structure of the transducer protein. Especially the protein-membrane proximal region and the protein-protein interfacial domains are sensitive towards non-native conditions. These data demonstrate that relevance of biochemical and structural information obtained from solubilized membrane proteins or membrane protein complexes has to be evaluated carefully.  相似文献   
67.
By means of time-resolved electron paramagnetic resonance (EPR) spectroscopy, the photoexcited structural changes of site-directed spin-labeled bacteriorhodopsin are studied. A complete set of cysteine mutants of the C-D loop, positions 100-107, and of the E-F loop, including the first alpha-helical turns of helices E and F, positions 154-171, was modified with a methanethiosulfonate spin label. The EPR spectral changes occurring during the photocycle are consistent with a small movement of helix C and an outward tilt of helix F. These helix movements are accompanied by a rearrangement of the E-F loop and of the C-terminal turn of helix E. The kinetic analysis of the transient EPR data and the absorbance changes in the visible spectrum reveals that the conformational change occurs during the lifetime of the M intermediate. Prominent rearrangements of nitroxide side chains in the vicinity of D96 may indicate the preparation of the reprotonation of the Schiff base. All structural changes reverse with the recovery of the bacteriorhodopsin initial state.  相似文献   
68.

Background

For effective control of visceral leishmaniasis (VL) in East Africa, new rapid diagnostic tests are required to replace current tests with low sensitivity. The aim of this study is to improve diagnosis of VL in East Africa by testing a new antigen from an autochthonous L. donovani strain in Sudan.

Methodology and Principle Findings

We cloned, expressed and purified a novel recombinant protein antigen of L. donovani from Sudan, designated rKLO8, that contains putative conserved domains with significant similarity to the immunodominant kinesin proteins of Leishmania. rKLO8 exhibited 93% and 88% amino acid identity with cloned kinesin proteins of L. infantum (synonymous L. chagasi) (K39) and L. donovani (KE16), respectively. We evaluated the diagnostic efficiency of the recombinant protein in ELISA for specific detection of VL patients from Sudan. Data were compared with a rK39 ELISA and two commercial kits, the rK39 strip test and the direct agglutination test (DAT). Of 106 parasitologically confirmed VL sera, 104 (98.1%) were tested positive by rKLO8 as compared to 102 (96.2%) by rK39. Importantly, the patients'' sera showed increased reactivity with rKLO8 than rK39. Specificity was 96.1% and 94.8% for rKLO8- and rK39 ELISAs, respectively. DAT showed 100% specificity and 94.3% sensitivity while rK39 strip test performed with 81.1% sensitivity and 98.7% specificity.

Conclusion

The increased reactivity of Sudanese VL sera with the rKLO8 makes this antigen a potential candidate for diagnosis of visceral leishmaniasis in Sudan. However, the suitability at the field level will depend on its performance in a rapid test format.  相似文献   
69.
Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.  相似文献   
70.
Body‐size reduction is a ubiquitous response to global warming alongside changes in species phenology and distributions. However, ecological consequences of temperature‐size (TS) responses for community persistence under environmental change remain largely unexplored. Here, we investigated the interactive effects of warming, enrichment, community size structure and TS responses on a three‐species food chain using a temperature‐dependent model with empirical parameterisation. We found that TS responses often increase community persistence, mainly by modifying consumer‐resource size ratios and thereby altering interaction strengths and energetic efficiencies. However, the sign and magnitude of these effects vary with warming and enrichment levels, TS responses of constituent species, and community size structure. We predict that the consequences of TS responses are stronger in aquatic than in terrestrial ecosystems, especially when species show different TS responses. We conclude that considering the links between phenotypic plasticity, environmental drivers and species interactions is crucial to better predict global change impacts on ecosystem diversity and stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号