首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2088篇
  免费   349篇
  2021年   36篇
  2019年   14篇
  2018年   27篇
  2017年   14篇
  2016年   50篇
  2015年   74篇
  2014年   99篇
  2013年   89篇
  2012年   119篇
  2011年   127篇
  2010年   86篇
  2009年   71篇
  2008年   86篇
  2007年   77篇
  2006年   72篇
  2005年   70篇
  2004年   80篇
  2003年   76篇
  2002年   87篇
  2001年   81篇
  2000年   72篇
  1999年   53篇
  1998年   36篇
  1997年   26篇
  1996年   15篇
  1995年   16篇
  1994年   33篇
  1993年   31篇
  1992年   58篇
  1991年   50篇
  1990年   35篇
  1989年   51篇
  1988年   44篇
  1987年   41篇
  1986年   22篇
  1985年   25篇
  1984年   23篇
  1983年   27篇
  1982年   20篇
  1980年   17篇
  1979年   21篇
  1978年   21篇
  1977年   21篇
  1976年   15篇
  1974年   21篇
  1973年   18篇
  1972年   17篇
  1971年   12篇
  1970年   21篇
  1967年   13篇
排序方式: 共有2437条查询结果,搜索用时 15 毫秒
991.
992.
CCR3 is responsible for tissue infiltration of eosinophils, basophils, mast cells, and Th2 cells, particularly in allergic diseases. In this context, CCR3 has emerged as a target for the treatment of allergic asthma. It is well known that the N-terminal domain of chemokines is crucial for receptor binding and, in particular, its activation. Based on this background, we investigated a number of N-terminally truncated or modified peptides derived from the chemokine CCL14/hemofiltrate CC chemokine-1 for their ability to modulate the activity of CCR3. Among 10 derivatives tested, n-nonanoyl (NNY)-CCL14[10-74] (NNY-CCL14) was the most potent at evoking the release of reactive oxygen species and inducing chemotaxis of human eosinophils. In contrast, NNY-CCL14 has inactivating properties on human eosinophils, because it is able to induce internalization of CCR3 and to desensitize CCR3-mediated intracellular calcium release and chemotaxis. In contrast to naturally occurring CCL11, NNY-CCL14 is resistant to degradation by CD26/dipeptidyl peptidase IV. Because inhibition of chemokine receptors through internalization is a reasonable therapeutic strategy being pursued for HIV infection, we tested a potential inhibitory effect of NNY-CCL14 in two murine models of allergic airway inflammation. In both OVA- and Aspergillus fumigatus-sensitized mice, i.v. treatment with NNY-CCL14 resulted in a significant reduction of eosinophils in the airways. Moreover, airway hyper-responsiveness was shown to be reduced by NNY-CCL14 in the OVA model. It therefore appears that an i.v. administered agonist internalizing and thereby inhibiting CCR3, such as NNY-CCL14, has the potential to alleviate CCR3-mediated diseases.  相似文献   
993.
HeLa cells were stably transfected with a cDNA clone encoding the B1 isoform of the mouse FcgammaRII receptor (hereafter referred to as HeLa-FcRII cells). The receptor was expressed at high level at the plasma membrane in about 90% of the cells. These cells bound and internalized mouse monoclonal virus-neutralizing antibodies 8F5 and 3B10 of the subtype immunoglobulin G2a (IgG2a) and IgG1, respectively. Binding of the minor-group human rhinovirus type 2 (HRV2) to its natural receptors, members of the low-density lipoprotein receptor family, is dependent on the presence of Ca(2+) ions. Thus, chelating Ca(2+) ions with EDTA prevented HRV2 binding, entry, and infection. However, upon complex formation of (35)S-labeled HRV2 with 8F5 or 3B10, virus was bound, internalized, and degraded in HeLa-FcRII cells. Furthermore, challenge of these cells with HRV2-8F5 or HRV2-3B10 complexes resulted in de novo synthesis of viral proteins, as shown by indirect immunofluorescence microscopy. These data demonstrate that minor-group receptors can be replaced by surrogate receptors to mediate HRV2 cell entry, delivery into endosomal compartments, and productive uncoating. Consequently, the conformational change and uncoating of HRV2 appears to be solely triggered by the low-pH (pH 相似文献   
994.
The anaerobic metabolism of phenol in the beta-proteobacterium Thauera aromatica proceeds via carboxylation to 4-hydroxybenzoate and is initiated by the ATP-dependent conversion of phenol to phenylphosphate. The subsequent para carboxylation of phenylphosphate to 4-hydroxybenzoate is catalyzed by phenylphosphate carboxylase, which was purified and studied. This enzyme consists of four proteins with molecular masses of 54, 53, 18, and 10 kDa, whose genes are located adjacent to each other in the phenol gene cluster which codes for phenol-induced proteins. Three of the subunits (54, 53, and 10 kDa) were sufficient to catalyze the exchange of 14CO2 and the carboxyl group of 4-hydroxybenzoate but not phenylphosphate carboxylation. Phenylphosphate carboxylation was restored when the 18-kDa subunit was added. The following reaction model is proposed. The 14CO2 exchange reaction catalyzed by the three subunits of the core enzyme requires the fully reversible release of CO2 from 4-hydroxybenzoate with formation of a tightly enzyme-bound phenolate intermediate. Carboxylation of phenylphosphate requires in addition the 18-kDa subunit, which is thought to form the same enzyme-bound energized phenolate intermediate from phenylphosphate with virtually irreversible release of phosphate. The 54- and 53-kDa subunits show similarity to UbiD of Escherichia coli, which catalyzes the decarboxylation of a 4-hydroxybenzoate derivative in ubiquinone (ubi) biosynthesis. They also show similarity to components of various decarboxylases acting on aromatic carboxylic acids, such as 4-hydroxybenzoate or vanillate, whereas the 10-kDa subunit is unique. The 18-kDa subunit belongs to a hydratase/phosphatase protein family. Phenylphosphate carboxylase is a member of a new family of carboxylases/decarboxylases that act on phenolic compounds, use CO2 as a substrate, do not contain biotin or thiamine diphosphate, require K+ and a divalent metal cation (Mg2+or Mn2+) for activity, and are strongly inhibited by oxygen.  相似文献   
995.
The anaerobic metabolism of phenol in the beta-proteobacterium Thauera aromatica proceeds via para-carboxylation of phenol (biological Kolbe-Schmitt carboxylation). In the first step, phenol is converted to phenylphosphate which is then carboxylated to 4-hydroxybenzoate in the second step. Phenylphosphate formation is catalyzed by the novel enzyme phenylphosphate synthase, which was studied. Phenylphosphate synthase consists of three proteins whose genes are located adjacent to each other on the phenol operon and were overproduced in Escherichia coli. The promoter region and operon structure of the phenol gene cluster were investigated. Protein 1 (70 kDa) resembles the central part of classical phosphoenolpyruvate synthase which contains a conserved histidine residue. It catalyzes the exchange of free [(14)C]phenol and the phenol moiety of phenylphosphate but not the phosphorylation of phenol. Phosphorylation of phenol requires protein 1, MgATP, and another protein, protein 2 (40 kDa), which resembles the N-terminal part of phosphoenol pyruvate synthase. Proteins 1 and 2 catalyze the following reaction: phenol + MgATP + H(2)O-->phenylphosphate + MgAMP + orthophosphate. The phosphoryl group in phenylphosphate is derived from the beta-phosphate group of ATP. The free energy of ATP hydrolysis obviously favors the trapping of phenol (K(m), 0.04 mM), even at a low ambient substrate concentration. The reaction is stimulated severalfold by another protein, protein 3 (24 kDa), which contains two cystathionine-beta-synthase domains of unknown function but does not show significant overall similarity to known proteins. The molecular and catalytic features of phenylphosphate synthase resemble those of phosphoenolpyruvate synthase, albeit with interesting modifications.  相似文献   
996.
Angiotensin-converting enzyme (ACE) produces the vasoconstrictor angiotensin II. The ACE protein is composed of two homologous domains, each binding zinc and each independently catalytic. To assess the physiologic significance of the two ACE catalytic domains, we used gene targeting in mice to introduce two point mutations (H395K and H399K) that selectively inactivated the ACE N-terminal catalytic site. This modification does not affect C-terminal enzymatic activity or ACE protein expression. In addition, the testis ACE isozyme is not affected by the mutations. Analysis of homozygous mutant mice (termed ACE 7/7) showed normal plasma levels of angiotensin II but an elevation of plasma and urine N-acetyl-Ser-Asp-Lys-Pro, a peptide suggested to inhibit bone marrow maturation. Despite this, ACE 7/7 mice had blood pressure, renal function, and hematocrit that were indistinguishable from wild-type mice. We also studied compound heterozygous mice in which one ACE allele was null (no ACE expression) and the second allele encoded the mutations selectively inactivating the N-terminal catalytic domain. These mice produced approximately half the normal levels of ACE, with the ACE protein lacking N-terminal catalytic activity. Despite this, the mice have a phenotype indistinguishable from wild-type animals. This study shows that, in vivo, the presence of the C-terminal ACE catalytic domain is sufficient to maintain a functional renin-angiotensin system. It also strongly suggests that the anemia present in ACE null mice is not due to the accumulation of the peptide N-acetyl-Ser-Asp-Lys-Pro.  相似文献   
997.
We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the beta-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of beta-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the beta-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats.  相似文献   
998.
We present a fast to perform spectrophotometric method for the quantification of ascorbic acid and its oxidized form dehydroascorbic acid in biological samples. The assay detects a chromophore formed during the reaction of dehydroascorbic acid with methanol in phosphate/citrate buffer. This reaction can also be employed for the determination of ascorbate (vitamin C) in the presence of ascorbate oxidase. The major advantage of the developed protocol for the determination of both forms of vitamin C is a simple spectrophotometrical single end point determination. It is demonstrated that the methanol method is an improvement compared with a commercially available test kit for the determination of vitamin C. Using the methanol method, a dose-dependent increase in intracellular ascorbic acid was determined upon incubation of L-929 cells and RAW 264.7 macrophages with increasing concentrations of extracellular ascorbate. In blood serum, vitamin C was determined at concentrations between 46 and 97 microM. Supplementation with different amounts of ascorbate showed satisfying recovery. In L-929 cells, even unphysiologically high amounts of reactive nitrogen species were unable to completely oxidize intracellular vitamin C.  相似文献   
999.
Homologs of the UL51 protein of herpes simplex virus have been identified in all herpesvirus subfamilies, but until now, no function has been assigned to any of them. To investigate function of the UL51 gene product of the alphaherpesvirus pseudorabies virus (PrV), we isolated and analyzed a mutant lacking the major part of the open reading frame, PrV-DeltaUL51F, and a rescuant. One-step growth analysis of PrV-DeltaUL51F revealed only slightly reduced titers, but plaque size was notably diminished and reached only approximately 30% the plaque size of wild-type PrV. Ultrastructurally, intracytoplasmic capsids were found in large numbers either without envelope or in different stages of envelopment, indicating that secondary envelopment in the cytoplasm was less efficient. However, neuroinvasion in the mouse trigeminal pathway after intranasal infection was only slightly delayed. A PrV UL11 mutant also showed a defect in secondary envelopment (M. Kopp, H. Granzow, W. Fuchs, B. G. Klupp, E. Mundt, A. Karger, and T. C. Mettenleiter, J. Virol. 77:5339-5351, 2003). Since both proteins are part of the viral tegument and are predicted to be membrane associated, they may serve similar, possibly redundant functions during viral morphogenesis. Therefore, we also isolated a mutant simultaneously lacking UL51 and UL11. This mutant exhibited further reduced plaque size compared to the single-deletion mutants, but viral titers were comparable to those for the UL11 mutant. In electron microscopic analyses, the observed defect in secondary envelopment was similar to that found in the UL11 single-deletion mutant. In conclusion, both conserved tegument proteins, either singly or in combination, are involved in virion morphogenesis in the cytoplasm but are not essential for viral replication in vitro and in vivo.  相似文献   
1000.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are autoimmune disorders in which the acetylcholine receptor (AChR) is the major autoantigen. Microarray technology was used to identify new potential drug targets for treatment of myasthenia that would reduce the need for the currently used nonspecific immunosuppression. The chemokine IFN-gamma-inducible protein 10 (IP-10; CXCL10), a CXC chemokine, and its receptor, CXCR3, were found to be overexpressed in lymph node cells of EAMG rats. Quantitative real-time PCR confirmed these findings and revealed up-regulated mRNA levels of another chemoattractant that activates CXCR3, monokine induced by IFN-gamma (Mig; CXCL9). TNF-alpha and IL-1beta, which act synergistically with IFN-gamma to induce IP-10, were also up-regulated. These up-regulations were observed in immune response effector cells, namely, lymph node cells, and in the target organ of the autoimmune attack, the muscle of myasthenic rats, and were significantly reduced after suppression of EAMG by mucosal tolerance induction with an AChR fragment. The relevance of IP-10/CXCR3 signaling in myasthenia was validated by similar observations in MG patients. A significant increase in IP-10 and CXCR3 mRNA levels in both thymus and muscle was observed in myasthenic patients compared with age-matched controls. CXCR3 expression in PBMC of MG patients was markedly increased in CD4(+), but not in CD8(+), T cells or in CD19(+) B cells. Our results demonstrate a positive association of IP-10/CXCR3 signaling with the pathogenesis of EAMG in rats as well as in human MG patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号