首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2090篇
  免费   349篇
  2021年   36篇
  2019年   14篇
  2018年   27篇
  2017年   14篇
  2016年   50篇
  2015年   74篇
  2014年   99篇
  2013年   89篇
  2012年   119篇
  2011年   127篇
  2010年   86篇
  2009年   71篇
  2008年   86篇
  2007年   77篇
  2006年   72篇
  2005年   70篇
  2004年   80篇
  2003年   76篇
  2002年   87篇
  2001年   81篇
  2000年   72篇
  1999年   53篇
  1998年   36篇
  1997年   26篇
  1996年   15篇
  1995年   16篇
  1994年   33篇
  1993年   31篇
  1992年   58篇
  1991年   50篇
  1990年   35篇
  1989年   51篇
  1988年   44篇
  1987年   41篇
  1986年   22篇
  1985年   25篇
  1984年   23篇
  1983年   27篇
  1982年   20篇
  1980年   17篇
  1979年   21篇
  1978年   21篇
  1977年   21篇
  1976年   15篇
  1974年   21篇
  1973年   18篇
  1972年   17篇
  1971年   12篇
  1970年   21篇
  1967年   13篇
排序方式: 共有2439条查询结果,搜索用时 31 毫秒
941.
Vimentin and keratin are coexpressed in many cells, but they segregate into two distinct intermediate filament (IF) networks. To understand the molecular basis for the sorting out of these IF subunits, we genetically engineered cDNAs encoding hybrid IF proteins composed of part vimentin and part type I keratin. When these cDNAs were transiently expressed in cells containing vimentin, keratin, or both IFs, the hybrid IF proteins all recognized one or the other or both networks. The ability to distinguish networks was dependent upon which segments of IF proteins were present in each construct. Constructs containing sequences encoding either helix 1B or helix 2B seemed to be the most critical in conferring IF recognition. At least for type I keratins, recognition was exerted at the level of dimer formation with wild-type type II keratin, as demonstrated by anion exchange chromatography. Interestingly, despite the fact that swapping of helical domains was not as deleterious to IF structure/function as deletion of helical domains, keratin/vimentin hybrids still caused structural aberrations in one or more of the cytoplasmic IF network. Thus, sequence diversity among IF proteins seems to influence not only coiled-coil but also higher ordered associations leading to 10-nm filament formation and/or IF interactions with other cellular organelles/proteins.  相似文献   
942.
IL-8 has been characterized primarily as a polymorphonuclear leukocyte (PMN) chemoattractant and proinflammatory mediator. Recently, we have reported that [Ala-IL-8]77 is secreted by activated cultured human endothelial cells and can function as a potent inhibitor of PMN adhesion to these monolayers. The pathophysiologic relevance of this in vitro observation was examined by determining the effects of intravascular or extravascular administration of IL-8 on PMN emigration at sites of acute inflammation in the skin of NZW rabbits. An i.v. bolus of [Ala-IL-8]77 (12 micrograms/kg) produced a marked and selective reduction of circulating PMN within 3 min, which returned toward preinjection levels within 30 min, and subsequently exceeded this level. A similar response was observed for circulating radiolabeled PMN, and gamma-scintigraphy determined that the lungs were the primary site of leukosequestration. During the 30- to 150-min interval after i.v. infusion of [Ala-IL-8]77, PMN emigration into acute inflammatory sites, elicited by various chemoattractants or cytokines, was significantly reduced, as judged histologically and quantitated with 51Cr-labeled PMN and myeloperoxidase measurements. Intravenous administration of [Ser-IL-8]72 yielded similar results. This inhibitory effect of i.v. IL-8 was transient and reinducible and did not reflect a suppression of the responsiveness of circulating PMN to chemoattractants. Intradermal injections of [Ala-IL-8]77 or [Ser-IL-8]72 induced dose-dependent PMN accumulation, which also was significantly reduced by i.v. administration of either form of IL-8. These results indicate that i.v. IL-8 can function as a PMN-directed leukocyte adhesion inhibitor and suggest that local secretion of IL-8 by activated endothelium may differentially modulate leukocyte-endothelial interactions at sites of acute inflammation.  相似文献   
943.
The structure of a Y35G mutant of bovine pancreatic trypsin inhibitor (BPTI) was solved by molecular replacement and was refined by both simulated annealing and restrained least-squares at 1.8 A resolution. The crystals belong to the space group P42212, with unit cell dimensions a = b = 46.75 A, c = 50.61 A. The final R-factor is 0.159 and the deviation from ideality for bond distances is 0.02 A. The structure of the mutant differs from that of the native protein, showing an overall root-mean-square (r.m.s.) difference of 1.86 A for main-chain atoms. However, the change is mostly localized in the two loops (respective r.m.s. values of 2.04 A and 3.93 A) and the C terminus (r.m.s. 6.79 A), while the core of the protein is well conserved (r.m.s. 0.45 A). The change in the loop regions can be clearly attributed to the mutation while the difference in the C terminus might be only due to a different crystal packing. Seventy water molecules were included in the model but only seven of them are shared with the native structure. Thermal parameters are showing a good correlation with those for the wild-type of BPTI.  相似文献   
944.
1988年上海甲型肝炎暴发流行可能重叠ECHO13型病毒感染   总被引:2,自引:0,他引:2  
  相似文献   
945.
When cultured on plastic and treated with transforming growth factor alpha (TGF alpha), human keratinocytes exhibit an increase in proliferation at the colony periphery, apparently as a consequence of enhanced cell migration (Barrandon and Green, 1987). To investigate the effects of TGF alpha on a differentiating stratified squamous epithelium and to begin to examine the molecular basis mediating this influence, we cultured human epidermal cells on a gelled lattice of collagen and fibroblasts, floating on the air-liquid interface. Under these conditions, raft cultures differentiate and exhibit morphological and biochemical features of human skin in vivo (Asselineau et al., 1986; Kopan et al., 1987). When 3-wk-old raft cultures were treated with TGF alpha, basal cells showed a marked increase in cell proliferation. At elevated concentrations of TGF alpha, the organization of cells within the artificial tissue changed and islands of basal cells entered the collagen matrix. Biochemical analysis of the response revealed that type I collagenase and gelatinase were induced by keratinocytes within 12 h after TGF alpha treatment. In contrast, invasion of basal cells into the collagen matrix was not significant until 48-72 h post-treatment, suggesting that collagenase and gelatinase production may be a prerequisite to this phenomenon. These results have important implications for the possible role of TGF alpha in squamous cell carcinoma and tumor invasion.  相似文献   
946.
To explore the relationship between keratin gene mutations and genetic disease, we made transgenic mice expressing a mutant keratin in the basal layer of their stratified squamous epithelia. These mice exhibited abnormalities in epidermal architecture and often died prematurely. Blistering occurred easily, and basal cell cytolysis was evidence at the light and electron microscopy levels. Keratin filament formation was markedly altered, with keratin aggregates in basal cells. In contrast, terminally differentiating cells made keratin filaments and formed a stratum corneum. Recovery of outer layer cells was attributed to down-regulation of mutant keratin expression and concomitant induction of differentiation-specific keratins as cells terminally differentiate, and the fact that these cells arose from basal cells developing at a time when keratin expression was relatively low. Collectively, the pathobiology and biochemistry of the transgenic mice and their cultured keratinocytes bore a resemblance to a group of genetic disorders known as epidermolysis bullosa simplex.  相似文献   
947.
N-2-acetylaminofluorene (AAF), a potent rat liver carcinogen, binds primarily to the C-8 position of guanine residues. In a bacterial forward mutation assay, more than 90% of the mutations induced by -AAF adducts are frameshift mutations located at specific sites: the so-called mutation hot spots. We are particularly interested in a class of -2 frameshift mutations occurring within a specific sequence, the NarI sequence. The NarI site, GGCGCC, contains three guanine residues that are approximately equally reactive toward -AAF substitution. To study further the mechanism by which mutations are induced by -AAF adducts at this site, we designed a new plasmid probe. In this paper we describe the construction and the effectiveness of this probe, pSM14, which provides a simple phenotypic test for detecting frameshift mutations within the NarI site. The construction and the characterization of plasmids with a single -AAF adduct in each of the three positions of the NarI site are also described. The strategy of construction that was used involves the ligation of oligonucleotides containing a single adduct in a NarI site into a gapped-duplex pSM14 plasmid. Plasmids that have successfully integrated the oligonucleotides by ligation at both the 5' and the 3' ends were purified by centrifugation on CsCl gradients. These constructs have been used in single adduct mutation studies.  相似文献   
948.
In a previous study, the forward mutation spectrum induced by the chemical carcinogen N-acetoxy-N-2-acetylaminofluorene was determined (Koffel-Schwartz et al. 1984). It was found that 90% of the induced mutations are frameshift mutations located within specific sequences (mutation hot spots). Two classes of mutation hot spots were found: (i) -1 frameshift mutations occurring within runs of guanines (i.e. GGGG----GGG; (ii) -2 frameshift mutations occurring within the NarI recognition sequence (GGCGCC----GGCC). In the present work, we further investigate the genetic requirements of these frameshift events by using specific reversion assays. Like UV-induced mutagenesis, frameshift mutations occurring within runs of G's (also referred to as the "slippage pathway") require the activated form of the RecA protein (RecA*). On the other hand, frameshift mutations occurring at the NarI site (the "NarI mutation pathway") require a LexA-controlled function(s) that is not UmuDC. The LexA-controlled gene(s) that is (are) involved in this pathway remain to be identified. Moreover, this pathway does not require RecA* for the proteolytic processing of a protein other than LexA (like the cleavage of UmuD in UV-induced mutagenesis). An "additional" role of RecA can be defined as follows: (i) The non-activated form of the RecA protein acts as an inhibitor in the NarI mutation pathway. (ii) This inhibition is relieved upon activation of RecA by UV irradiation of the bacteria. (iii) A recA deletion mutant is totally proficient in the NarI mutation pathway provided the SOS system is derepressed [lexA (Def) allele]. Therefore, RecA does not actively participate in the fixation of the mutation. A molecular model for this "additional" role of RecA is proposed.  相似文献   
949.
envM genes of Salmonella typhimurium and Escherichia coli.   总被引:4,自引:0,他引:4       下载免费PDF全文
Conjugation and bacteriophage P1 transduction experiments in Escherichia coli showed that resistance to the antibacterial compound diazaborine is caused by an allelic form of the envM gene. The envM gene from Salmonella typhimurium was cloned and sequenced. It codes for a 27,765-dalton protein. The plasmids carrying this DNA complemented a conditionally lethal envM mutant of E. coli. Recombinant plasmids containing gene envM from a diazaborine-resistant S. typhimurium strain conferred the drug resistance phenotype to susceptible E. coli cells. A guanine-to-adenine exchange in the envM gene changing a Gly codon to a Ser codon was shown to be responsible for the resistance character. Upstream of envM a small gene coding for a 10,445-dalton protein was identified. Incubating a temperature-sensitive E. coli envM mutant at the nonpermissive temperature caused effects on the cells similar to those caused by treatment with diazaborine, i.e., inhibition of fatty acid, phospholipid, and lipopolysaccharide biosynthesis, induction of a 28,000-dalton inner membrane protein, and change in the ratio of the porins OmpC and OmpF.  相似文献   
950.
When cells from normal human epidermis and from the human squamous cell carcinoma line SCC-13 were seeded on floating rafts of collagen and fibroblasts, they stratified and underwent terminal differentiation. Although the program of differentiation in SCC-13 cells was morphologically abnormal, the cultures resembled normal epidermal raft cultures by expressing the terminal differentiation-specific keratins, K1/K10, and by restricting their proliferative capacity to the basal-like cells of the population. In addition, the differentiating cells of both normal and SCC-13 raft cultures expressed keratins K6 and K16, which are not normally expressed in epidermis, but are synthesized suprabasally during wound-healing and in various epidermal diseases associated with hyperproliferation. While the behavior of normal and SCC-13 rafts was quite similar when they were cultured over normal medium, significant biochemical differences began to emerge when the cultures were exposed to retinoic acid. Most notably, while the SCC-13 cultures still stratified extensively, they showed a marked inhibition of both abnormal (K6/K16) and normal (K1/K10) differentiation-associated keratins, concomitantly with an overall disappearance of differentiated phenotype. Surprisingly, the reduction in K6/K16 in retinoid-treated SCC-13 cultures was not accompanied by a decrease in cell proliferation. Using immunohistochemistry combined with [3H]thymidine labeling, we demonstrate that while the expression of K6 and K16 are often associated with hyperproliferation, these keratins are only produced in the nondividing, differentiating populations of proliferating cultures. Moreover, since their expression can be suppressed without a corresponding decrease in proliferation, the expression of these keratins cannot be essential to the nature of the hyperproliferative epidermal cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号