首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   23篇
  国内免费   2篇
  2023年   4篇
  2022年   10篇
  2021年   21篇
  2020年   15篇
  2019年   7篇
  2018年   10篇
  2017年   6篇
  2016年   16篇
  2015年   17篇
  2014年   27篇
  2013年   25篇
  2012年   23篇
  2011年   28篇
  2010年   11篇
  2009年   14篇
  2008年   5篇
  2007年   13篇
  2006年   16篇
  2005年   12篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
61.
Computational determination of optimal side-chain conformations in protein structures has been a long-standing and challenging problem. Solving this problem is important for many applications including homology modeling, protein docking, and for placing small molecule ligands on protein-binding sites. Programs available as of this writing are very fast and reasonably accurate, as measured by deviations of side-chain dihedral angles; however, often due to multiple atomic clashes, they produce structures with high positive energies. This is problematic in applications where the energy values are important, for example when placing small molecules in docking applications; the relatively small binding energy of the small molecule is drowned by the large energy due to atomic clashes that hampers finding the lowest energy state of the docked ligand. To address this we have developed an algorithm for generating a set of side-chain conformations that is dense enough that at least one of its members would have a root mean-square deviation of no more than R Å from any possible side-chain conformation of the amino acid. We call such a set a side-chain cover set of order R for the amino acid. The size of the set is constrained by the energy of the interaction of the side chain to the backbone atoms. Then, side-chain cover sets are used to optimize the conformation of the side chains given the coordinates of the backbone of a protein. The method we use is based on a variety of dead-end elimination methods and the recently discovered dynamic programming algorithm for this problem. This was implemented in a computer program called Octopus where we use side-chain cover sets with very small values for R, such as 0.1 Å, which ensures that for each amino-acid side chain the set contains a conformation with a root mean-square deviation of, at most, R from the optimal conformation. The side-chain dihedral-angle accuracy of the program is comparable to other implementations; however, it has the important advantage that the structures produced by the program have negative energies that are very close to the energies of the crystal structure for all tested proteins.  相似文献   
62.
63.
Zhou C  Slaughter BD  Unruh JR  Eldakak A  Rubinstein B  Li R 《Cell》2011,147(5):1186-1196
During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother and that Bni1p formin regulates this transport. Here, we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking, and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data do not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells.  相似文献   
64.
3-Nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase enzyme (SDH), induces neurodegeneration similar to that observed in Huntington’s disease (HD). Reduction of prepulse inhibition (PPI) of acoustic startle response, locomotor hypoactivity, bilateral striatal lesions as well as brain oxidative stress are major features of HD. The present study was designed to investigate neuroprotective effect of Ginkgo biloba extract (EGb 761) on 3-NP induced neurobehavioral changes and striatal lesions.Rats administered 3-NP (20 mg/kg, s.c.) for five consecutive days exhibited PPI deficits and locomotor hypoactivity whereas, pretreatment of animals with EGb 761 (100 mg/kg, i.p. for 15 days) ahead of and during the induction of HD by 3-NP (20 mg/kg for 5 days starting at day 8) ameliorated 3-NP-induced neurobehavioral deficits. Administration of 3-NP increased the level of striatal malondialdehyde (MDA). This effect was prevented in animals pre-treated with EGb 761. Changes in the level of apoptotic regulatory gene expressions, following 3-NP treatment, were demonstrated as both an up-regulation and a down-regulation of the expression levels of striatal Bax and Bcl-xl genes, respectively. In addition, an up-regulation of the expression level of striatal glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also observed. Pre-treatment with EGb 761 caused a down-regulation in striatal GAPDH and Bax together with an up-regulation of striatal Bcl-xl expression level as compared to the 3-NP treated group. Histochemical examination of striatal tissue showed that EGb 761 significantly prevented 3-NP induced inhibition of SDH activity. Histopathological examination further affirmed the neuroprotective effect of EGb 761 against 3-NP toxicity.Taken together, these results suggest that EGb 761 has a neuroprotective role in the current HD paradigm, which may be related to improvement of energy metabolism, antioxidant properties and antiapoptotic effects.  相似文献   
65.
Puerarin (daidzein-8-C-glucoside), a major isoflavone glycoside purified from Pueraria lobata, is well reported to have a neuroprotective effect primarily by the antioxidant mechanisms. This investigation was designed to evaluate the efficacy of Puerarin (Pur) to offset 3-nitropropionic acid (3-NP) induced neurotoxicity. Male Wistar strain rats were given 3-NP (20 mg/kg, s.c.) over five consecutive days, whereas Pur (200 mg/kg, i.p.) was administrated 30 min before 3-NP. Rats treated with 3-NP exhibited significant weight loss, reduction of the prepulse inhibition, locomotor hypoactivity and hypothermia. The striata, hippocampi and cortices of the 3-NP treated rats showed abnormal levels of neurotransmitters, oxidative damage and characteristic histopathological lesions. Treatment with Pur ahead of 3-NP, significantly prevented weight loss, PPI deficit, locomotor hypoactivity and hypothermia. Pur treatment blocked the 3-NP-induced neurotransmitters abnormalities (GABA, DA, 5-HT and NE), and normalized the oxidative stress biomarkers (lipid peroxidation, reduced glutathione, glutathione peroxidase). Histopathological examination further affirmed Pur’s neuroprotective effect against 3-NP-induced neurotoxicity. In conclusion, Pur protected the brain tissues from 3-NP induced neurotoxicity primarily by its neuromodulation and antioxidant effect.  相似文献   
66.
Recent studies have shown high usage of the IGHV1-69 germline immunoglobulin gene for influenza hemagglutinin stem-directed broadly-neutralizing antibodies (HV1-69-sBnAbs). Here we show that a major structural solution for these HV1-69-sBnAbs is achieved through a critical triad comprising two CDR-H2 loop anchor residues (a hydrophobic residue at position 53 (Ile or Met) and Phe54), and CDR-H3-Tyr at positions 98±1; together with distinctive V-segment CDR amino acid substitutions that occur in positions sparse in AID/polymerase-η recognition motifs. A semi-synthetic IGHV1-69 phage-display library screen designed to investigate AID/polη restrictions resulted in the isolation of HV1-69-sBnAbs that featured a distinctive Ile52Ser mutation in the CDR-H2 loop, a universal CDR-H3 Tyr at position 98 or 99, and required as little as two additional substitutions for heterosubtypic neutralizing activity. The functional importance of the Ile52Ser mutation was confirmed by mutagenesis and by BCR studies. Structural modeling suggests that substitution of a small amino acid at position 52 (or 52a) facilitates the insertion of CDR-H2 Phe54 and CDR-H3-Tyr into adjacent pockets on the stem. These results support the concept that activation and expansion of a defined subset of IGHV1-69-encoded B cells to produce potent HV1-69-sBnAbs does not necessarily require a heavily diversified V-segment acquired through recycling/reentry into the germinal center; rather, the incorporation of distinctive amino acid substitutions by Phase 2 long-patch error-prone repair of AID-induced mutations or by random non-AID SHM events may be sufficient. We propose that these routes of B cell maturation should be further investigated and exploited as a pathway for HV1-69-sBnAb elicitation by vaccination.  相似文献   
67.
This study aimed to explore whether the altered expression of tumor necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF) and apoptotic changes in mid zone (MZ) and rupture zone (RZ) of fetal membranes (FM) are regulatory mechanisms associated with labor at term. Fifteen FM specimens were collected after vaginal deliveries and 13 specimens after elective caesarian section. Histological and immunohistochemical analysis were employed. Area percent of TNF-α and VEGF immunostaining and apoptotic index (AI) were evaluated using image analysis. The statistical data revealed significantly higher area % for TNF-α, VEGF immunoexpression and AI in labor compared to non-labor specimens (p < 0.0001). There was a significantly higher percentage of TNF-α immunoexpressed area in MZ compared with RZ in both groups (p < 0.0001). VEGF expression in RZ of both groups proved nearly double or triple the area % of expression relative to MZ with highly significant difference (p < 0.0001). quantitative analysis revealed near two fold increase in the AI in RZ (13.42 % ± 1.2 in labor; 11.20 % ± 0.96 in non-labor groups) when compared to MZ (7.20 % ± 0.6 in labor; 5.08 % ± 0.76 in non-labor groups) with highly significant zonal difference (p < 0.0001). Correlation analysis revealed significant correlation between apoptotic indices and area % of TNF-α (r = 0.575, p = 0.002 in non-labor; r = 0.652, p < 0.0001 in labor) and VEGF (r = 0.795, p < 0.0001 in non-labor; r = 0.668, p < 0.0001 in labor). In conclusion, Apoptosis may be regulated by TNF-α and VEGF expression in FM at labor. MZ is a step back from RZ and could participate actively in rupture of the FM during labor. TNF-α and VEGF increase with onset of labor and differentially expressed in the RZ and the MZ. These findings call for further study with tissue cultures or animal models.  相似文献   
68.
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.  相似文献   
69.
Diabetes mellitus (DM) is a complex progressive disease characterized by hyperglycemia and a high risk of atherothrombotic disorders affecting the coronary, cerebral, and peripheral arterial trees. Oxidative stress is reported in diabetic patients. We investigated the hemostatic functions and oxidative stress in streptozotocin (STZ)-induced diabetic rats and the effects of warfarin and l-carnitine on those parameters. Forty male Sprague–Dawley rats were divided into four groups: control, DM, and DM received warfarin or l-carnitine. In all rats, blood glucose, insulin, hemoglobin A1c (HbA1c), fibrinogen, factor VII (FVII), plasminogen activator inhibitor-1 (PAI-1), fibrin degradation products (FDP), protein C, antithrombin III (ATIII), malondialdehydes (MDA), and antioxidants (superoxide dismutase, catalase, glutathione peroxidase, glutathione) were measured. Also, prothrombin time (PT), activated partial thromboplastin time (aPTT), coagulation time, and platelet aggregation were evaluated. In diabetic rats, plasma glucose, HbA1c, MDA, fibrinogen, FVII, FDP, PAI-1, and platelet aggregation increased while insulin, PT, aPTT, coagulation time, protein C, ATIII, and antioxidants decreased. Warfarin administration to diabetic rats decreased FVII and FDP and increased PT, aPTT, and coagulation time with no effect on MDA, antioxidants, PAI-1, protein C, ATIII, and platelet aggregation. On the other hand, l-carnitine decreased fibrinogen, FVII, FDP, PAI-1, MDA, and platelet aggregation and increased PT, aPTT, coagulation time, protein C, ATIII, and antioxidants in diabetic rats. Therefore, we concluded that hyperglycemia plays an important role in hypercoagulation state and oxidative stress in STZ-induced DM. While l-carnitine improves oxidative stress and decreases the hypercoagulation state in DM, warfarin normalizes the hypercoagulation state with no effect on oxidative stress.  相似文献   
70.
Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD+ complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH, immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH that converts crotonyl-CoA to butyryl-CoA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号