首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2021篇
  免费   236篇
  2021年   22篇
  2019年   30篇
  2018年   26篇
  2017年   30篇
  2016年   38篇
  2015年   72篇
  2014年   63篇
  2013年   96篇
  2012年   121篇
  2011年   117篇
  2010年   82篇
  2009年   72篇
  2008年   82篇
  2007年   89篇
  2006年   89篇
  2005年   81篇
  2004年   102篇
  2003年   81篇
  2002年   89篇
  2001年   47篇
  2000年   47篇
  1999年   48篇
  1998年   29篇
  1997年   21篇
  1996年   22篇
  1995年   23篇
  1994年   17篇
  1993年   21篇
  1992年   25篇
  1991年   17篇
  1990年   28篇
  1989年   18篇
  1988年   22篇
  1986年   17篇
  1985年   21篇
  1984年   17篇
  1983年   20篇
  1982年   20篇
  1980年   20篇
  1979年   30篇
  1978年   20篇
  1977年   24篇
  1976年   25篇
  1975年   24篇
  1974年   15篇
  1973年   17篇
  1972年   16篇
  1971年   15篇
  1970年   15篇
  1968年   15篇
排序方式: 共有2257条查询结果,搜索用时 218 毫秒
81.
82.
Previous biological studies showed evidence of a genetic link between obesity and pigmentation in both animal models and humans. Our study investigated the individual and joint associations between obesity-related single nucleotide polymorphisms (SNPs) and both human pigmentation and risk of melanoma. Eight obesity-related SNPs in the FTO, MAP2K5, NEGR1, FLJ35779, ETV5, CADM2, and NUDT3 genes were nominally significantly associated with hair color among 5,876 individuals of European ancestry. The genetic score combining 35 independent obesity-risk loci was significantly associated with darker hair color (beta-coefficient per ten alleles = 0.12, P value = 4 × 10?5). However, single SNPs or genetic scores showed non-significant association with tanning ability. We further examined the SNPs at the FTO locus for their associations with pigmentation and risk of melanoma. Among the 783 SNPs in the FTO gene with imputation R 2 quality metric >0.8 using the 1,000 genome data set, ten and three independent SNPs were significantly associated with hair color and tanning ability respectively. Moreover, five independent FTO SNPs showed nominally significant association with risk of melanoma in 1,804 cases and 1,026 controls. But none of them was associated with obesity or in linkage disequilibrium with obesity-related variants. FTO locus may confer variation in human pigmentation and risk of melanoma, which may be independent of its effect on obesity.  相似文献   
83.
84.
Elevated levels of amyloid-β (Aβ) peptides, the main component of amyloid plaques in Alzheimer’s disease, are the result of excessive β- and γ-cleavage of the amyloid precursor protein (APP) and/or impaired Aβ clearance in the brain. It has been suggested that high concentrations of luteinizing hormone (LH) in women contribute to increased Aβ generation after menopause, but the mechanism for this is incompletely understood. We investigated the effect of human chorionic gonadotropin (hCG), an LH receptor agonist, on APP β-cleavage in the SH-SY5Y neuroblastoma cell line. Treatment of these cells with hCG-induced elevated β-cleavage in a dose-dependent manner: administration of 30 mIU but not 10 mIU/ml of hCG significantly increased sAPPβ levels in the cell medium 1.7-fold as measured by ELISA. These results support the notion that LH contributes to elevated Aβ levels at least in part by increasing β-cleavage of APP by β-site APP cleaving enzyme.  相似文献   
85.
We previously demonstrated that vaccination of lactating rhesus monkeys with a DNA prime/vector boost strategy induces strong T-cell responses but limited envelope (Env)-specific humoral responses in breast milk. To improve vaccine-elicited antibody responses in milk, hormone-induced lactating rhesus monkeys were vaccinated with a transmitted/founder (T/F) HIV Env immunogen in a prime-boost strategy modeled after the moderately protective RV144 HIV vaccine. Lactating rhesus monkeys were intramuscularly primed with either recombinant DNA (n = 4) or modified vaccinia virus Ankara (MVA) poxvirus vector (n = 4) expressing the T/F HIV Env C.1086 and then boosted twice intramuscularly with C.1086 gp120 and the adjuvant MF59. The vaccines induced Env-binding IgG and IgA as well as neutralizing and antibody-dependent cellular cytotoxicity (ADCC) responses in plasma and milk of most vaccinated animals. Importantly, plasma neutralization titers against clade C HIV variants MW965 (P = 0.03) and CAP45 (P = 0.04) were significantly higher in MVA-primed than in DNA-primed animals. The superior systemic prime-boost regimen was then compared to a mucosal-boost regimen, in which animals were boosted twice intranasally with C.1086 gp120 and the TLR 7/8 agonist R848 following the same systemic prime. While the systemic and mucosal vaccine regimens elicited comparable levels of Env-binding IgG antibodies, mucosal immunization induced significantly stronger Env-binding IgA responses in milk (P = 0.03). However, the mucosal regimen was not as potent at inducing functional IgG responses. This study shows that systemic MVA prime followed by either intranasal or systemic protein boosts can elicit strong humoral responses in breast milk and may be a useful strategy to interrupt postnatal HIV-1 transmission.  相似文献   
86.
KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.  相似文献   
87.
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the “core complex” that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10''s TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.  相似文献   
88.
Parentage analysis in natural populations is a powerful tool for addressing a wide range of ecological and evolutionary questions. However, identifying parent–offspring pairs in samples collected from natural populations is often more challenging than simply resolving the Mendelian pattern of shared alleles. For example, large numbers of pairwise comparisons and limited numbers of genetic markers can contribute to incorrect assignments, whereby unrelated individuals are falsely identified as parent–offspring pairs. Determining which parentage methods are the least susceptible to making false assignments is an important challenge facing molecular ecologists. In a recent paper, Harrison et al. (2013a) address this challenge by comparing three commonly used parentage methods, including a Bayesian approach, in order to explore the effects of varied proportions of sampled parents on the accuracy of parentage assignments. Unfortunately, Harrison et al. made a simple error in using the Bayesian approach, which led them to incorrectly conclude that this method could not control the rate of false assignment. Here, I briefly outline the basic principles behind the Bayesian approach, identify the error made by Harrison et al., and provide detailed guidelines as to how the method should be correctly applied. Furthermore, using the exact data from Harrison et al., I show that the Bayesian approach actually provides greater control over the number of false assignments than either of the other tested methods. Lastly, I conclude with a brief introduction to solomon , a recently updated version of the Bayesian approach that can account for genotyping error, missing data and false matching.  相似文献   
89.
The type IV secretion systems (T4SS) are widely distributed among the Gram-negative and –positive bacteria. These systems mediate the transfer of DNA and protein substrates across the cell envelope to bacterial or eukaryotic cells generally through a process requiring direct cell-to-cell contact. Bacteria have evolved T4SS for survival during establishment of pathogenic or symbiotic relationships with eukaryotic hosts. The Agrobacterium tumefaciens VirB/D4 T4SS and related conjugation machines serve as models for detailed mechanistic studies aimed at elucidating the nature of translocation signals, machine assembly pathways and architectures, and the dynamics of substrate translocation. The A. tumefaciens VirB/D4 T4SS are polar-localized organelles composed of a secretion channel and an extracellular T pilus. These T4SS are assembled from 11 or more subunits. whose membrane topologies, intersubunit contacts and, in some cases, 3-dimensional structures are known. Recently, powerful in vivo assays have identified C-terminal translocation signals, defined for the first time the translocation route for a DNA substrate through a type IV secretion channel, and supplied evidence that ATP energy consumption contributes to a late stage of machine morphogenesis. Together, these recent findings describe the mechanics of type IV secretion in unprecedented detail.  相似文献   
90.
The kynurenine pathway is the major route for the oxidative degradation of the amino acid tryptophan. Activity of the pathway is involved in several disease conditions, both in the periphery and the central nervous system, including cancer, inflammatory disorders, neurological conditions, psychiatric disorders and neurodegenerative diseases. Three enzymes are now known to catalyze the first and rate-limiting step in the catabolism of tryptophan along this pathway: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO, subsequently named IDO1), both of which have been extensively studied, and a third enzyme, indoleamine 2,3-dioxygenase 2 (IDO2), a relative newcomer to the kynurenine pathway field. The adjuvant chemotherapeutic agent, 1-methyl-d-tryptophan, was intially suggested to target IDO2, implying involvement of IDO2 in tumorigenesis. Subsequently this compound has been suggested to have alternative actions and the physiological and pathophysiological roles of IDO2 are unclear. Targeted genetic interventions and selective inhibitors provide approaches for investigating the biology of IDO2. This review focuses on the current knowledge of IDO2 biology and discusses tools that will assist in further characterizing the enzymes of the kynurenine pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号