首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   11篇
  324篇
  2023年   2篇
  2022年   12篇
  2021年   28篇
  2020年   4篇
  2019年   12篇
  2018年   12篇
  2017年   6篇
  2016年   8篇
  2015年   23篇
  2014年   16篇
  2013年   15篇
  2012年   22篇
  2011年   28篇
  2010年   13篇
  2009年   13篇
  2008年   18篇
  2007年   11篇
  2006年   11篇
  2005年   18篇
  2004年   14篇
  2003年   17篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1974年   1篇
排序方式: 共有324条查询结果,搜索用时 0 毫秒
61.
It has been proposed that the copy number of mitochondria DNA (mtDNA) per cell reflects gene–environment interactions between unknown hereditary factors and exposures affecting levels of oxidative stress. However, whether copy number of mtDNA could be a risk predictor of oxidative stress-related human cancers, such as breast cancer, remains to be determined. To explore the role of mtDNA copy number in breast cancer etiology, we analyzed mtDNA copy number in whole blood from 103 patients with breast cancer and 103 matched control subjects and examined in relation to endogenous antioxidants. Case patients with breast cancer had a statistically significantly higher mtDNA copy number than control subjects (median: 1.29 vs. 0.80, P < 0.01). High mtDNA copy number (above the median in controls) was associated with a statistically significantly increased risk of breast cancer, compared with low copy number (Odds ratio (OR) = 4.67, 95% CI: 2.45–8.92), with a statistically significant dose–response relationship in trend analysis (P < 0.01). Moreover, mtDNA copy number was significantly inversely associated with several important endogenous oxidants and antioxidants in blood in either the cases (total glutathione, CuZn-SOD activity and myeloperoxidase (MPO)) or the controls (catalase (CAT) activity). These results suggest the mtDNA copy number could be associated with risk of breast cancer, perhaps through an oxidative stress mechanism.  相似文献   
62.
Programmed cell death (apoptosis) is a ubiquitous means utilized by multicellular organisms for elimination of unwanted cells during development and homeostasis. Dysregulated apoptosis is implicated in an array of clinical disorders including cancer, autoimmune diseases, neurodegenerative disorders, and ischemia. During programmed cell death, a series of proteases, known as caspases, with different specificities play crucial roles in the apoptotic process. Caspase-3, a group II cysteine aspartate protease, recognizes and cleaves substrates harboring the amino acid sequence aspartic acid-glutamic acid-valine-aspartic acid (DEVD), and it plays an important role in the terminal phase of apoptosis. Here we report the development of a novel imaging platform for sensing the activation of cellular proteases. A recombinant chimeric protein was constructed, composed of a cell-surface-targeted single-chain antibody (sFv) fused to a Golgi retention signal. The DEVD tetrapeptide sequence was included between the single-chain antibody and the Golgi retention signal as a caspase-3 protease cleavage site. When expressed in cultured cells this fusion protein was localized to Golgi bodies and was not detected on the cell surface. Induction of apoptosis resulted in cleavage of the fusion protein releasing the single-chain antibody from the Golgi retention signal in a caspase-dependent manner. As a result, in cells undergoing apoptosis the single-chain antibody was visualized at the cell surface by immunofluorescence microscopy. The expression of sFv on the surface of cells in a protease-dependent manner provides a unique opportunity for real-time imaging through the use of targeted nanoparticles. This methodology may provide for a multimodal noninvasive real-time imaging of apoptosis and a new opportunity for high-throughput screening of cell-death-modulating therapeutic agents.  相似文献   
63.
64.
Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. Production of extended-spectrum β-lactamases (ESBLs) is a significant resistance-mechanism that impedes the antimicrobial treatment of infections caused by Enterobacteriaceae and is a serious threat to the currently available antibiotic armory. ESBLs are classified into several groups according to their amino acid sequence homology. Proper infection control practices and barriers are essential to prevent spread and outbreaks of ESBL producing bacteria. As bacteria have developed different strategies to counter the effects of antibiotics, the identification of the resistance mechanism may help in the discovery and design of new antimicrobial agents. The carbapenems are widely regarded as the drugs of choice for the treatment of severe infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are scarce. Hence, more expeditious diagnostic testing of ESBL-producing bacteria and the feasible modification of guidelines for community-onset bacteremia associated with different infections are prescribed.  相似文献   
65.
During V(D)J recombination, RAG targeting to correct sites versus off-target sites relies on both DNA sequence features and on chromatin marks. Kinetic analysis using the first highly active full-length purified RAG1/RAG2 complexes has now allowed us to define the important catalytic features of this complex. We found that the overall rate of nicking, but not hairpinning, is critical for the discrimination between correct (optimal) versus off-target (suboptimal) sites used in human T-cell lymphomas, and we show that the C-terminal portion of RAG2 is required for this. This type of kinetic analysis permits us to analyze only the catalytically active RAG complex, in contrast to all other methods, which are unavoidably confounded by mixture with inactive RAG complexes. Moreover, we can distinguish the two major features of any enzymatic catalysis: the binding constant (K(D)) and the catalytic turnover rate, k(cat). Beyond a minimal essential threshold of heptamer quality, further suboptimal heptamer deviations primarily reduce the catalytic rate constant k(cat) for nicking. Suboptimal nonamers reduce not only the binding of the RAG complex to the recombination site (K(D)) but also the catalytic rate constant, consistent with a tight interaction between the RAG complex and substrate during catalysis. These features explain many aspects of RAG physiology and pathophysiology.  相似文献   
66.
67.
Sojourners visiting high-altitude (HA) (>2500 m) are susceptible to HA disorders; on the contrary, HA natives are well adapted to the extreme hypoxic environment. High aldosterone levels are believed to be involved in HA disorders, we, therefore, envisaged role of CYP11B2 gene variants in HA adaptation and therefore investigated the -344T/C, intron-2 conversion (Iw/Ic), K173R, and A5160C polymorphisms. In addition, polymorphisms in AGT, AT1R, ATP1A1, ADRB2, and GSTP1 genes were also investigated. The study comprised of 662 subjects, comprising of 426 Himalayan highlanders (HLs) and 236 lowlanders (LLs). The -344T/C and K173R polymorphisms were found to be in complete linkage disequilibrium. The wild-type allele -344T and combination of wild-type homozygous genotypes between -344T/C, Iw/Ic, and A5160C polymorphisms, containing all the six wild-type alleles were over-represented in the HLs (p < 0.0001, and p = 0.008, respectively). The wild-type haplotypes -344T-Iw, -344T-5160A, and -344T-Iw-5160A also showed over-representation in the HLs (p < 0.0001). Furthermore, greater the number of wild-type alleles, lower was the ARR (p < 0.05). The genotype distribution in remaining genes did not differ. To conclude, the over-representation of wild-type -344T allele, genotype combinations and haplotypes of CYP11B2, and their correlation with lower aldosterone levels associate with HA adaptation in the HLs. Such an allelic presentation in sojourners may help them cope with adverse HA environment.  相似文献   
68.
To evaluate the geographic distribution of Giardia intestinalis genotypes in Nablus, West Bank, Palestine, a genotyping study was performed using clinical fecal samples. Microscopic examination confirmed that 8 of 69 (11.6%) samples were G. intestinalis positive, and subsequent genotyping analyses targeting the small-subunit ribosomal RNA (18S rRNA) and glutamate dehydrogenase (GDH) genes revealed the G. intestinalis genotypes within the 8 samples. Of these 8 samples, 6 were clustered with assemblage A-II and the remaining 2 samples were clustered with assemblage B by 18S rRNA gene analysis; however, direct sequencing of the GDH gene segments from the latter 2 samples showed a mixed infection profile. To assess those samples, we employed a subcloning approach and successfully isolated 6 independent assemblage B subgenotypes. These partial GDH gene sequences (393 bp) had 15 single-nucleotide polymorphisms, all of which were synonymous transition substitutions at the third nucleotide position of codons. From the results, we concluded that the highly polymorphic gene loci such as GDH gene locus might provide us an opportunity to obtain a detailed molecular data even from the samples with multiple-subgenotype mixed infections. Therefore, subcloning approach is recommended in genotyping studies, especially in those conducted in giardiasis-endemic areas, where the repeated and cumulative infections could be commonly expected.  相似文献   
69.
A series of 2-arylbenzoxazole inhibitors of the cholesterol ester transfer protein (CETP) is described. Structure–activity studies focused on variation of the substitution of the benzoxazole moiety. Substitution at the 5- and 7-positions of the benzoxazole moiety was found to be beneficial for CETP inhibition. Compound 47 was found to be the most potent inhibitor in this series and inhibited CETP with an IC50 of 28 nM.  相似文献   
70.
A new class of CETP inhibitors was designed and prepared. These compounds are potent both in vitro and in vivo. The most active compound (12d) has shown an ability to raise HDL significantly in transgenic mouse PD model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号