首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   1篇
  97篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   9篇
  2010年   7篇
  2009年   3篇
  2008年   4篇
  2007年   3篇
  2006年   9篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1989年   2篇
  1985年   1篇
排序方式: 共有97条查询结果,搜索用时 0 毫秒
91.
Das A  Rai D  Dikshit M  Palit G  Nath C 《Life sciences》2005,77(18):2299-2311
Effect of acute, chronic-predictable and chronic-unpredictable stress on memory and acetylcholinesterase (AChE) was investigated in rats. The animals were subjected to 3 type of stressors--(1) acute immobilization stress, (2) chronic-predictable stress i.e., immobilization daily for 5 consecutive days and (3) chronic-unpredictable stress that included reversal of light/dark cycle, over-night fasting, forced-swimming, immobilization and forced exercise in random unpredictable manner daily for 5 consecutive days. Learning and memory function was studied by single trial Passive avoidance test. AChE activity was assayed spectrophotometrically in the detergent (DS) and salt (SS) soluble fractions in different brain regions. Learning was obtained in acute and chronic-predictable stress groups but not in chronic-unpredictable group. Acute, chronic-predictable and chronic-unpredictable stress caused significant decrease in AChE activity in the DS fraction of cortex, hippocampus and hypothalamus as compared to control. Results indicate that AChE in DS fraction is predominantly affected in stressed and stressed-trained group but cognition is affected only by chronic-unpredictable stress. In acute and chronic-predictable groups the decreased AChE activity in the hippocampal DS fraction during learning may be responsible to maintain cognitive function by enhancing the cholinergic activity.  相似文献   
92.
In the current study, indigenous bacterial isolates Bacillus subtilis VITSUKMW1 and Escherichia coli VITSUKMW3 from a chromite mine were adapted to 100 mg L?1 of Cr(VI). The phase contrast and scanning electron microscopic images showed increase in the length of adapted E. coli cells and chain formation in case of adapted B. subtilis. The presence of chromium on the surface of the bacteria was confirmed by energy dispersive X-ray spectroscopy (EDX), which was also supported by the conspicuous Cr–O peaks in FTIR spectra. The transmission electron microscopic (TEM) images of adapted E. coli and B. subtilis showed the presence of intact cells with Cr accumulated inside the bacteria. The TEM–EDX confirmed the internalization of Cr(VI) in the adapted cells. The specific growth rate and Cr(VI) reduction capacity was significantly higher in adapted B. subtilis compared to that of adapted E. coli. To study the possible role of Cr(VI) toxicity affecting the Cr(VI) reduction capacity, the definite assays for the released reactive oxygen species (ROS) and ROS scavenging enzymes (SOD and GSH) were carried out. The decreased ROS production as well as SOD and GSH release observed in adapted B. subtilis compared to the adapted E. coli corroborated well with its higher specific growth rate and increased Cr(VI) reduction capacity.  相似文献   
93.
The manufacturing of bispecific antibodies can be challenging for a variety of reasons. For example, protein expression problems, stability issues, or the use of non-standard approaches for manufacturing can result in poor yield or poor facility fit. In this paper, we demonstrate the use of standard antibody platforms for large-scale manufacturing of bispecific IgG1 by controlled Fab-arm exchange. Two parental antibodies that each contain a single matched point mutation in the CH3 region were separately expressed in Chinese hamster ovary cells and manufactured at 1000 L scale using a platform fed-batch and purification process that was designed for standard antibody production. The bispecific antibody was generated by mixing the two parental molecules under controlled reducing conditions, resulting in efficient Fab-arm exchange of >95% at kg scale. The reductant was removed via diafiltration, resulting in spontaneous reoxidation of interchain disulfide bonds. Aside from the bispecific nature of the molecule, extensive characterization demonstrated that the IgG1 structural integrity was maintained, including function and stability. These results demonstrate the suitability of this bispecific IgG1 format for commercial-scale manufacturing using standard antibody manufacturing techniques.  相似文献   
94.
In this study, silk fibroin nanofibrous scaffolds were developed to investigate the attachment and proliferation of primary human meniscal cells. Silk fibroin (SF)–polyvinyl alcohol (PVA) blended electrospun nanofibrous scaffolds with different blend ratios (2:1, 3:1, and 4:1) were prepared. Morphology of the scaffolds was characterized using atomic force microscopy (AFM). The hybrid nanofibrous mats were crosslinked using 25 % (v/v) glutaraldehyde vapor. In degradation study, the crosslinked nanofiber showed slow degradation of 20 % on weight after 35 days of incubation in simulated body fluid (SBF). The scaffolds were characterized with suitable techniques for its functional groups, porosity, and swelling ratio. Among the nanofibers, 3:1 SF:PVA blend showed uniform morphology and fiber diameter. The blended scaffolds had fluid uptake and swelling ratio of 80 % and 458 ± 21 %, respectively. Primary meniscal cells isolated from surgical debris after meniscectomy were subcultured and seeded onto these hybrid nanofibrous scaffolds. Meniscal cell attachment studies confirmed that 3:1 SF:PVA nanofibrous scaffolds supported better cell attachment and growth. The DNA and collagen content increased significantly with 3:1 SF:PVA. These results clearly indicate that a blend of SF:PVA at 3:1 ratio is suitable for meniscus cell proliferation when compared to pure SF-PVA nanofibers.  相似文献   
95.
96.
Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen, and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N), and soluble phosphorus (sol. P) are upto 65%, 98%, 70%, and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater.  相似文献   
97.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号