首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7583篇
  免费   603篇
  国内免费   7篇
  2023年   39篇
  2022年   69篇
  2021年   228篇
  2020年   89篇
  2019年   111篇
  2018年   169篇
  2017年   126篇
  2016年   217篇
  2015年   310篇
  2014年   373篇
  2013年   458篇
  2012年   599篇
  2011年   547篇
  2010年   348篇
  2009年   303篇
  2008年   418篇
  2007年   408篇
  2006年   354篇
  2005年   302篇
  2004年   309篇
  2003年   239篇
  2002年   224篇
  2001年   196篇
  2000年   174篇
  1999年   136篇
  1998年   55篇
  1997年   46篇
  1996年   30篇
  1995年   46篇
  1994年   39篇
  1993年   40篇
  1992年   95篇
  1991年   78篇
  1990年   85篇
  1989年   86篇
  1988年   66篇
  1987年   68篇
  1986年   71篇
  1985年   74篇
  1984年   54篇
  1983年   54篇
  1982年   41篇
  1981年   29篇
  1980年   31篇
  1979年   46篇
  1978年   35篇
  1976年   27篇
  1975年   28篇
  1974年   36篇
  1973年   38篇
排序方式: 共有8193条查询结果,搜索用时 15 毫秒
981.
Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ. CaBP7 NTD encompasses the two high affinity Ca2+ binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca2+ but not Mg2+ and undergoes significant conformational changes in both secondary and tertiary structure upon Ca2+ binding. The Ca2+-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca2+-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIβ.  相似文献   
982.
The focal adhesion adapter protein p130(cas) regulates adhesion and growth factor-related signaling, in part through Src-mediated tyrosine phosphorylation of p130(cas). AND-34/BCAR3, one of three NSP family members, binds the p130(cas) carboxyl terminus, adjacent to a bipartite p130(cas) Src-binding domain (SBD) and induces anti-estrogen resistance in breast cancer cell lines as well as phosphorylation of p130(cas). Only a subset of the signaling properties of BCAR3, specifically augmented motility, are dependent upon formation of the BCAR3-p130(cas) complex. Using GST pull-down and immunoprecipitation studies, we show that among NSP family members, only BCAR3 augments the ability of p130(cas) to bind the Src SH3 domain through an RPLPSPP motif in the p130(cas) SBD. Although our prior work identified phosphorylation of the serine within the p130(cas) RPLPSPP motif, mutation of this residue to alanine or glutamic acid did not alter BCAR3-induced Src SH3 domain binding to p130(cas). The ability of BCAR3 to augment Src SH3 binding requires formation of a BCAR3-p130(cas) complex because mutations that reduce association between these two proteins block augmentation of Src SH3 domain binding. Similarly, in MCF-7 cells, BCAR3-induced tyrosine phosphorylation of the p130(cas) substrate domain, previously shown to be Src-dependent, was reduced by an R743A mutation that blocks BCAR3 association with p130(cas). Immunofluorescence studies demonstrate that BCAR3 expression alters the intracellular location of both p130(cas) and Src and that all three proteins co-localize. Our work suggests that BCAR3 expression may regulate Src signaling in a BCAR3-p130(cas) complex-dependent fashion by altering the ability of the Src SH3 domain to bind the p130(cas) SBD.  相似文献   
983.
Present study investigates the cultivable diversity of root-associated bacteria from a medicinal plant Ajuga bracteosa in the Kangra valley, in order to determine their plant growth promoting (PGP) and biotechnological potential. The plant was found to exhibit a positive rhizosphere effect of 1.3-1.5. A total of 123 morphologically different bacteria were isolated from the rhizospheric soil and roots of the plant. Medium composition was found to have significant effect on the composition of isolated bacterial populations. Majority of the rhizospheric soil isolates belonged to α- and γ-Proteobacteria, with Pseudomonas constituting the most dominant species. Endophytic bacterial community, on other hand, consisted almost exclusively of Firmicutes. Majority of the isolates showed PGP activity by producing siderophores and indole acetic acid. Several isolates were found to exhibit very high antioxidant activity in the culture medium. A significant proportion of isolates also demonstrated other ecologically important activities like phosphate solubilization, nitrogen fixation, and production of hydrolytic enzymes including amylase, protease, lipase, chitinase, cellulase, pectinase and phosphatase. Firmicutes were found to be metabolically the most versatile group and performed multiple enzyme activities. This is the first systematic study of culturable bacterial community from the rhizosphere of A. bracteosa, particularly in the Kangra valley region.  相似文献   
984.
985.
A novel series of pTyr mimetics containing triaryl-sulfonamide derivatives (5a-r) are reported as potent and selective PTP1B inhibitors. Some of the test compounds (5o and 5p) showed excellent selectivity towards PTP1B over various PTPs, including TCPTP (in vitro). The lead compound 5o showed potent antidiabetic activity (in vivo), along with improved pharmacokinetic profile. These preliminary results confirm discovery of highly potent and selective PTP1B inhibitors for the treatment of T2DM.  相似文献   
986.
The small-molecule, water-soluble molecular beacon probe 1 is hydrolyzed by the lysate and living cells of human prostate cancer cell lines (LNCaP), resulting in strong green fluorescence. In contrast, probe 1 does not undergo significant hydrolysis in either the lysate or living cells of human nontumorigenic prostate cells (RWPE-1). These results, corroborated by UV-Vis spectroscopy and fluorescent microscopy, reveal that probe 1 is a sensitive and specific fluorogenic and chromogenic sensor for the detection of human prostate cancer cells among nontumorigenic prostate cells and that carboxylesterase activity is a specific biomarker for human prostate cancer cells.  相似文献   
987.
A series of 2-(1H-pyrazol-1-yl)pyridines are described as inhibitors of ALK5 (TGFβ receptor I kinase). Modeling compounds in the ALK5 kinase domain enabled some optimization of potency via substitutions on the pyrazole core. One of these compounds PF-03671148 gave a dose dependent reduction in TGFβ induced fibrotic gene expression in human fibroblasts. A similar reduction in fibrotic gene expression was observed when PF-03671148 was applied topically in a rat wound repair model. Thus these compounds have potential utility for the prevention of dermal scarring.  相似文献   
988.
Sodium hydrogen exchanger (SHE) inhibitor is one of the most important targets in treatment of myocardial ischemia. In the course of our research into new types of non-acylguanidine, SHE inhibitory activities of 5-tetrahydroquinolinylidine aminoguanidine derivatives were used to build pharmacophore and 3D-QSAR models. Genetic Algorithm Similarity Program (GASP) was used to derive a 3D pharmacophore model which was used in effective alignment of data set. Eight molecules were selected on the basis of structure diversity to build 10 different pharmacophore models. Model 1 was considered as the best model as it has highest fitness score compared to other nine models. The obtained model contained two acceptor sites, two donor atoms and one hydrophobic region. Pharmacophore modeling was followed by substructure searching and virtual screening. The best CoMFA model, representing steric and electrostatic fields, obtained for 30 training set molecules was statistically significant with cross-validated coefficient (q(2)) of 0.673 and conventional coefficient (r(2)) of 0.988. In addition to steric and electrostatic fields observed in CoMFA, CoMSIA also represents hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. CoMSIA model was also significant with cross-validated coefficient (q(2)) and conventional coefficient (r(2)) of 0.636 and 0.986, respectively. Both models were validated by an external test set of eight compounds and gave satisfactory prediction (r(pred)(2)) of 0.772 and 0.701 for CoMFA and CoMSIA models, respectively. This pharmacophore based 3D-QSAR approach provides significant insights that can be used to design novel, potent and selective SHE inhibitors.  相似文献   
989.
Series of benzyl-phenoxybenzyl amino-phenyl acid derivatives (8a-q) are reported as non-steroidal GR antagonist. Compound 8g showed excellent h-GR binding and potent antagonistic activity (in vitro). The lead compound 8g exhibited significant oral antidiabetic and antihyperlipidemic effects (in vivo), along with liver selectivity. These preliminary results confirm discovery of potent and liver selective passive GR antagonist for the treatment of T2DM.  相似文献   
990.
Allethrin (C(19)H(26)O(3)) is non-cyano-containing pyrethroid insecticide that is used extensively for controlling flies and mosquitoes. Apart from its neurotoxic effects in non-target species, allethrin is reported to be mutagenic in bacterial systems. In this study, we observed oxidative damage-mediated genotoxicity caused by allethrin in Swiss albino mice. The genotoxic potential of allethrin was evaluated using chromosome aberrations (CAs) and a micronuclei (MN) induction assay as genetic end-points. The oral intubation of allethrin (25 and 50mg/kg b.wt.) significantly induces CAs and MN in mouse bone marrow cells. The DNA-damaging potential of allethrin was estimated in mouse liver using the DNA alkaline unwinding assay (DAUA) and by measuring the levels of 8-hydroxy-2'-deoxy-guanosine (8-OH-dG). Furthermore, a dose-dependent increase in reactive oxygen species (ROS) generation and lipid peroxidation (LPO), with a concurrent decrease in superoxide dismutase (SOD) and catalase, confirm its pro-oxidant potential. The DNA-damaging potential of allethrin was found to be mediated through the modulation of p53, p21, GADD45α and MDM-2. These results confirm the genotoxic and the pro-oxidant potential of allethrin in Swiss albino mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号