首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4407篇
  免费   239篇
  国内免费   7篇
  4653篇
  2023年   34篇
  2022年   71篇
  2021年   170篇
  2020年   77篇
  2019年   90篇
  2018年   159篇
  2017年   109篇
  2016年   152篇
  2015年   198篇
  2014年   269篇
  2013年   343篇
  2012年   370篇
  2011年   379篇
  2010年   232篇
  2009年   221篇
  2008年   237篇
  2007年   198篇
  2006年   190篇
  2005年   143篇
  2004年   146篇
  2003年   112篇
  2002年   117篇
  2001年   61篇
  2000年   56篇
  1999年   43篇
  1998年   15篇
  1997年   9篇
  1996年   18篇
  1995年   17篇
  1994年   15篇
  1993年   13篇
  1992年   25篇
  1991年   24篇
  1990年   21篇
  1989年   29篇
  1988年   29篇
  1987年   29篇
  1986年   20篇
  1985年   24篇
  1984年   21篇
  1983年   13篇
  1982年   16篇
  1981年   9篇
  1980年   10篇
  1979年   23篇
  1978年   16篇
  1977年   13篇
  1976年   9篇
  1975年   8篇
  1970年   7篇
排序方式: 共有4653条查询结果,搜索用时 15 毫秒
51.
Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins’ expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.Subject terms: Apoptosis, Protein-protein interaction networks  相似文献   
52.
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.  相似文献   
53.
Epigenetic mechanisms of plant stress responses and adaptation   总被引:3,自引:0,他引:3  
Epigenetics has become one of the hottest topics of research in plant functional genomics since it appears promising in deciphering and imparting stress-adaptive potential in crops and other plant species. Recently, numerous studies have provided new insights into the epigenetic control of stress adaptation. Epigenetic control of stress-induced phenotypic response of plants involves gene regulation. Growing evidence suggest that methylation of DNA in response to stress leads to the variation in phenotype. Transposon mobility, siRNA-mediated methylation and host methyltransferase activation have been implicated in this process. This review presents the current status of epigenetics of plant stress responses with a view to use this knowledge towards engineering plants for stress tolerance.  相似文献   
54.
In order to cope up with the reactive oxygen species (ROS) generated by host innate immune response, most of the intracellular organisms express Catalase for the enzymatic destruction/detoxification of hydrogen peroxide, to combat its deleterious effects. Catalase thus, scavenges ROS thereby playing a pivotal role in facilitating the survival of the pathogen within the host, and thus contributes to its pathogenesis. Bacillus anthracis harbors five isoforms of Catalase, but none of them has been studied so far. Thus, this study is the first attempt to delineate the biochemical and functional characteristics of one of the isoforms of Catalase (Cat1.4) of B. anthracis, followed by identification of residues critical for catalysis. The general strategy used, so far for mutational analysis in Catalases is structure based, i.e. the residues in the vicinity of heme were mutated to decipher the enzymatic mechanism. However, in the present study, protein sequence analysis was used for the prediction of catalytically important residues of Catalase. Essential measures were adopted to ensure the accuracy of predictions like after retrieval of well-annotated sequences from the database with EC 1.11.1.6, preprocessing was done to remove irrelevant sequences. The method used for multiple alignment of sequences, was guided by structural alignment and thereafter, an information theoretic measure, Relative Entropy was used for the critical residue prediction. By exploiting this strategy, we identified two previously known essential residues, H55 and Y338 in the active site which were demonstrated to be crucial for the activity. We also identified six novel crucial residues (Q332, Y117, H215, W257, N376 and H146) located distantly from the active site. Thus, the present study highlights the significance of this methodology to identify not only those crucial residues which lie in the active site of Catalase, but also the residues located distantly.  相似文献   
55.
56.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   
57.
Summary A key chiral intermediate lactol(3)[3aS (3a,4,7,7a)]-hexahydro-4,7-epoxy-isobenzofuran-1 (3H)-one was prepared for the total synthesis of a new thromboxane antagonist. The stereoselective hydrolysis of (exo,exo)-7-oxabicyclo[2.2.1]heptane-2,3-dimethanol, diacetate ester (1) to the corresponding chiral monoacetate ester (2) was carried out with lipases, among which Amano P-30 lipase from Pseudomonas sp. was most effective since it gave the desired enantiomer of monoacetate ester. A yield of 75 mol% and optical purity of >99% was obtained when the reaction was conducted in a biphasic system with 10% toluene at 5 g/l of the substrate. Lipase P-30 was immobilized on Accurel polypropylene (PP) and the immobilized enzyme was reused (five cycles) without loss of enzyme activity, productivity or optical purity. The reaction process was scaled-up to 80 1 (400 g substrate) and monoacetate (2) was isolated in 80 mol% yield with 99.3% optical purity as determined by chiral HPLC and nuclear magnetic resonance (NMR) analysis. A gas chromatography of 99.5% and specific rotation, []D of -7.6° was obtained. The chiral monoacetate ester (2) was oxidized to its corresponding aldehyde and subsequently hydrolyzed to give lactol (3).  相似文献   
58.
Arsenic contamination has increased due to several environmental and anthropogenic activities. It is considered a carcinogen by the International Agency for Research on Cancer. It affects human health and causes various ailments and nervous system disorders. An environmental concern arises as arsenic enters the food chain through consumption of crops grown in arsenic affected areas. It has been observed that uptake of arsenic in plant parts is affected by the concentration of nutrients. Addition of nutrients either enhances the uptake of arsenic or the uptake of arsenic is reduced. Arsenic influences the nutrient uptake and distribution of nutrients in plants by either competing directly with nutrients and/or altering metabolic processes. The role played by nutrients has a direct bearing on the arsenic remediation of the crops and hence, it will be of significance to crop growers in reducing the arsenic content in crops. This review reports about the mobility, bioavailability and plant response to the presence of nutrients and their effect on arsenic phytoremediation. In this review, major emphasis has been made to contemplate the effects of nutrients like phosphorus, nitrogen, ferrous, calcium, potassium, sulphur and selenium in arsenic phytoremediation.  相似文献   
59.
Mammalian ovary is metabolically active organ and generates by‐products such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) on an extraordinary scale. Both follicular somatic cells as well as oocyte generate ROS and RNS synchronously and their effects are neutralized by intricate array of antioxidants. ROS such as hydrogen peroxide (H2O2) and RNS such as nitric oxide (NO) act as signaling molecules and modulate various aspects of oocyte physiology including meiotic cell cycle arrest and resumption. Generation of intraoocyte H2O2 can induce meiotic resumption from diplotene arrest probably by the activation of adenosine monophosphate (AMP)‐activated protein kinase A (PRKA)—or Ca2+‐mediated pathway. However, reduced intraoocyte NO level may inactivate guanylyl cyclase‐mediated pathway that results in the reduced production of cyclic 3′,5′‐guanosine monophosphate (cGMP). The reduced level of cGMP results in the activation of cyclic 3′,5′‐adenosine monophosphate (cAMP)‐phosphodiesterase 3A (PDE3A), which hydrolyses cAMP. The reduced intraoocyte cAMP results in the activation of maturation promoting factor (MPF) that finally induces meiotic resumption. Thus, a transient increase of intraoocyte H2O2 level and decrease of NO level may signal meiotic resumption from diplotene arrest in mammalian oocytes. J. Cell. Biochem. 111: 521–528, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
60.
Pandey AK  Gaind S  Ali A  Nain L 《Biodegradation》2009,20(3):293-306
A composting experiment was conducted to evaluate the effect of a hyperlignocellulolytic fungal consortium and different nitrogen amendments on paddy straw composting in terms of changes in physicochemical and biological parameters. A fungal consortium comprising four lignocellulolytic mesophilic fungal cultures was used as inoculum for bioaugmentation of paddy straw in perforated pits. The comparative effect of farmyard manure (FYM), soybean trash, poultry litter and urea on the composting process was evaluated at monthly intervals in terms of physicochemical (pH, EC, available P, C:N ratio and humus content) and biological (enzymatic and microbial activity) parameters. The compost prepared from bioaugmented paddy straw composting mixture, with poultry manure as nitrogen supplement attained desirable C:N ratio in 1 month and displayed least phytotoxicity levels along with higher production of β-1,4-Exoglucanase. The combined activity of the autochthonous composting microbiota as well as the externally applied fungal inoculum accelerated the composting process of paddy straw. Supplementation of paddy straw with poultry manure in 8:1 ratio was identified as the best treatment to hasten the composting process. This study highlights the importance of application of fungal inoculum and an appropriate N-amendment such as poultry manure for preparation of compost using a substrate having high C:N ratio, such as paddy straw.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号