首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2555篇
  免费   174篇
  国内免费   3篇
  2023年   13篇
  2022年   39篇
  2021年   103篇
  2020年   34篇
  2019年   47篇
  2018年   87篇
  2017年   59篇
  2016年   89篇
  2015年   110篇
  2014年   172篇
  2013年   199篇
  2012年   229篇
  2011年   255篇
  2010年   146篇
  2009年   143篇
  2008年   153篇
  2007年   130篇
  2006年   124篇
  2005年   94篇
  2004年   98篇
  2003年   72篇
  2002年   69篇
  2001年   18篇
  2000年   19篇
  1999年   12篇
  1996年   6篇
  1995年   12篇
  1994年   6篇
  1993年   9篇
  1992年   7篇
  1991年   9篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   18篇
  1986年   9篇
  1985年   12篇
  1984年   5篇
  1983年   9篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1974年   8篇
  1973年   6篇
  1972年   4篇
  1971年   4篇
  1970年   5篇
  1968年   4篇
排序方式: 共有2732条查询结果,搜索用时 484 毫秒
941.
Freely suspended and variously entrapped viable cells of the yeast Metschnikowia koreensis were examined for the asymmetric reduction of prochiral acetophenone. A ketone substrate at 25 mM can be converted (92%) to the corresponding alcohol within 3 h using freely suspended cells [46 mg/mL dry cell weight (DCW)] at pH 9 (Tris buffer, 50 mM), 25 °C, in an agitated reactor (200 rpm). The reaction displayed an excellent stereoselectivity of >99%. Supplementation of the reaction mixture with glucose (20 g/L) greatly enhanced the rate of the bioreduction reaction likely because of improved cofactor recycling in the cells. The cells could successfully reduce various acetophenones substituted with electron withdrawing groups on the phenyl ring, particularly at the para-position compared to ortho- or meta-substituted acetophenones. The ketone reductase of M. koreensis showed Prelog-selectivity as the reaction exclusively yielded (S)-alcohols. The thermostability and the substrate tolerance of the yeast were improved by immobilization in calcium alginate beads. Immobilization reduced the effectiveness factor only slightly.  相似文献   
942.
943.
Ovarian acyclicity is one of the most important causes of infertility in water buffalo. Recent studies have indicated alterations in the composition of follicular fluid during the condition. The aim of this study was to determine the changes in follicular fluid concentrations of estradiol, progesterone and insulin during ovarian acyclicity in water buffalo. Ovaries were collected from 50 acyclic and 95 cyclic (control) buffaloes and follicular fluid was aspirated from small (5.0-6.9 mm), medium (7.0-9.9 mm) and large (≥10.0 mm) sized follicles. Estradiol concentration was lower (P<0.0001) in acyclic (1.4 ± 0.09 ng/ml) than in cyclic (3.3 ± 0.18 ng/ml) buffaloes. Regardless of the ovarian cyclic status, there was an increase (P<0.01) in estradiol concentration with the increase in follicle size; the mean concentrations were 2.4 ± 0.16 ng/ml, 2.8 ± 0.29 ng/ml and 3.5 ± 0.41 ng/ml in small, medium and large follicles, respectively. A higher (P<0.001) progesterone concentration was recorded in acyclic (24.3 ± 2.61 ng/ml) compared to the cyclic (7.6 ± 0.79 ng/ml) group. Furthermore, acyclic buffaloes had a lower (P<0.05) concentration of insulin in the follicular fluid than that of cyclic buffaloes (15.2 ± 1.55 μIU/ml versus 25.9 ± 2.78 μIU/ml, respectively). In conclusion, acyclic buffaloes have lower concentrations of estradiol and insulin concurrent with higher concentrations of progesterone in the follicular fluid. These hormonal changes in the follicular microenvironment are possibly a manifestation of the disturbances in the normal follicular development leading to anovulation and anestrus in acyclic buffaloes.  相似文献   
944.
Focal adhesion kinase (FAK), a non-receptor protein kinase, is known to be a phosphatidyl inositol 3-kinase (PI3K) pathway activator and thus widely implicated in regulation of cell survival and cancer. In recent years FAK has also been strongly implicated as a crucial regulator of insulin resistance in peripheral tissues like skeletal muscle and liver, where decrease in its expression/activity has been shown to lead to insulin resistance. However, in the present study we report an altogether different role of FAK in regulation of insulin/PI3K signaling in neurons, the post-mitotic cells. An aberrant increase in FAK tyrosine phosphorylation was observed in insulin resistant Neuro-2a (N2A) cells. Downregulation of FAK expression utilizing RNAi mediated gene silencing in insulin resistant N2A cells completely ameliorated the impaired insulin/PI3K signaling and glucose uptake. FAK silencing in primary cortical neurons also showed marked enhancement in glucose uptake. The results thus suggest that in neurons FAK acts as a negative regulator of insulin/PI3K signaling. Interestingly, the available literature also demonstrates cell-type specific functions of FAK in neurons. FAK that is well known for its cell survival effects has been shown to be involved in neurodegeneration. Along with these previous reports, present findings highlight a novel and critical role of FAK in neurons. Moreover, as this implicates differential regulation of insulin/PI3K pathway by FAK in peripheral tissues and neuronal cells, it strongly suggests precaution while considering FAK modulators as possible therapeutics.  相似文献   
945.
Shwanavidin is an avidin-like protein from the marine proteobactrium Shewanella denitrificans, which exhibits an innate dimeric structure while maintaining high affinity toward biotin. A unique residue (Phe-43) from the L3,4 loop and a distinctive disulfide bridge were shown to account for the high affinity toward biotin. Phe-43 emulates the function and position of the critical intermonomeric Trp that characterizes the tetrameric avidins but is lacking in shwanavidin. The 18 copies of the apo-monomer revealed distinctive snapshots of L3,4 and Phe-43, providing rare insight into loop flexibility, binding site accessibility, and psychrophilic adaptation. Nevertheless, as in all avidins, shwanavidin also displays high thermostability properties. The unique features of shwanavidin may provide a platform for the design of a long sought after monovalent form of avidin, which would be ideal for novel types of biotechnological application.  相似文献   
946.
Diospyrin diethylether (D7), a bisnaphthoquinonoid derivative, exhibited an oxidative stress-dependent apoptosis in several human cancer cells and tumor models. The present study was aimed at evaluation of the increase in cytosolic calcium [Ca(2+)](c) leading to the apoptotic cell death triggered by D7 in MCF7 human breast carcinoma cells. A phosphotidylcholine-specific phospholipase C (PC-PLC) inhibitor, viz. U73122, and an antioxidant, viz. N-acetylcysteine, could significantly prevent the D7-induced rise in [Ca(2+)](c) and PC-PLC activity. Using an endoplasmic reticulum (ER)-Ca(2+) mobilizer (thapsigargin) and an ER-IP3R antagonist (heparin), results revealed ER as a major source of [Ca(2+)](c) which led to the activation of calpain and caspase12, and cleavage of fodrin. These effects including apoptosis were significantly inhibited by the pretreatment of Bapta-AM (a cell permeable Ca(2+)-specific chelator), or calpeptin (a calpain inhibitor). Furthermore, D7-induced [Ca(2+)](c) was found to alter mitochondrial membrane potential and induce cytochrome c release, which was inhibited by either Bapta-AM or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter). Thus, these results provided a deeper insight into the D7-induced redox signaling which eventually integrated the calcium-dependent calpain/caspase12 activation and mitochondrial alterations to accentuate the induction of apoptotic cell death.  相似文献   
947.
The aggregation of amyloid beta (Aβ) peptides plays an important role in the development of Alzheimer's disease. Despite extensive effort, it has been difficult to characterize the secondary and tertiary structure of the Aβ monomer, the starting point for aggregation, due to its hydrophobicity and high aggregation propensity. Here, we employ extensive molecular dynamics simulations with atomistic protein and water models to determine structural ensembles for Aβ(42), Aβ(40), and Aβ(42)-E22K (the Italian mutant) monomers in solution. Sampling of a total of >700 microseconds in all-atom detail with explicit solvent enables us to observe the effects of peptide length and a pathogenic mutation on the disordered Aβ monomer structural ensemble. Aβ(42) and Aβ(40) have crudely similar characteristics but reducing the peptide length from 42 to 40 residues reduces β-hairpin formation near the C-terminus. The pathogenic Italian E22K mutation induces helix formation in the region of residues 20-24. This structural alteration may increase helix-helix interactions between monomers, resulting in altered mechanism and kinetics of Aβ oligomerization.  相似文献   
948.
949.
950.
Cylindrocladium quinqueseptatum has been considered as the most destructive pathogen of Eucalyptus nurseries and plantations in north India. Genetic resistance has not been determined against this disease in Eucalyptus and genetic diversity among the fungal population in northern India is not known. Seventy three isolates from infected leaves and twigs of Eucalyptus were collected from different northern Indian state and analyzed through RAPD-PCR for screening genetic diversity. The UPGMA cluster analysis score of 284 loci permitted identification of 11 population lines and an outlier. This molecular variability prevalent among the north Indian population of the pathogen can used in identifying Cylindrocladium leaf and seedling blight resistant Eucalyptus germplasm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号