首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2555篇
  免费   174篇
  国内免费   3篇
  2023年   13篇
  2022年   39篇
  2021年   103篇
  2020年   34篇
  2019年   47篇
  2018年   87篇
  2017年   59篇
  2016年   89篇
  2015年   110篇
  2014年   172篇
  2013年   199篇
  2012年   229篇
  2011年   255篇
  2010年   146篇
  2009年   143篇
  2008年   153篇
  2007年   130篇
  2006年   124篇
  2005年   94篇
  2004年   98篇
  2003年   72篇
  2002年   69篇
  2001年   18篇
  2000年   19篇
  1999年   12篇
  1996年   6篇
  1995年   12篇
  1994年   6篇
  1993年   9篇
  1992年   7篇
  1991年   9篇
  1990年   11篇
  1989年   10篇
  1988年   8篇
  1987年   18篇
  1986年   9篇
  1985年   12篇
  1984年   5篇
  1983年   9篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   10篇
  1978年   6篇
  1974年   8篇
  1973年   6篇
  1972年   4篇
  1971年   4篇
  1970年   5篇
  1968年   4篇
排序方式: 共有2732条查询结果,搜索用时 31 毫秒
201.
In the search for selectivity, the aspartic proteases are known to be a very difficult case because the enzymes of this family are not only sequentially but structurally also very similar. To gain insight into the selectivity and specificity of the aspartic proteases family we characterized the binding sites of four malarial aspartic protease (plasmepsin I, plasmepsin II, plasmepsin IV, P. vivax plasmepsin) and two human aspartic proteases (cathepsin D and pepsin) with the intention of identifying the regions that could be potential sites for obtaining selectivity using molecular interaction field approach.  相似文献   
202.
During development, the organizer provides instructive signals to surrounding cells as well as contributing cells to axial structures. To dissect organizer function at different developmental stages, conditional approaches such as the Cre/loxP system for conditional mutagenesis are particularly useful. Here we describe two new Cre transgenic mouse lines, Foxa2 NFP-Cre and Nodal PNC-Cre, with activity in two organizer domains, the posterior notochord (PNC) and notochord. These lines were made using defined regulatory elements from the Foxa2 and Nodal genes that direct Cre expression in overlapping domains of the PNC and notochord. Our detailed analysis of the timing and location of Foxa2 NFP-Cre and Nodal PNC-Cre activity indicates that these lines are appropriate for conditional mutagenesis of genes expressed from early somite stages onward.  相似文献   
203.
204.
205.
In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes.In humans, it has long been recognized that the reproductive age of the parents has an influence on the health of their progeny. An older reproductive age of the mother is known to increase the fraction of aneuploid gamete formation (Hurles, 2012). For instance, the risk for a trisomy increases from 2% to 3% for mothers in their 20s to more than 30% for mothers in their 40s (Hassold and Hunt, 2009). The age of the father also has an effect on the frequency of spontaneous congenital disorders and common complex diseases, such as autism and some cancers (Goriely and Wilkie, 2012). Indeed, sperm from 36- to 57-year-old men have more double-strand breaks (DSBs) than those of 20- to 35-year-old individuals (Singh et al., 2003). Similarly, the efficiency of DSB repair was reported to decrease with age in vegetative tissues of the plant model system Arabidopsis (Arabidopsis thaliana; Boyko et al., 2006).Owing to the continuous divisions of spermatogonial stem cells, the male germline of humans is thought to be more mutagenic than the female germline. Indeed, it was shown that the paternal germline is more mutagenic than the maternal one with respect to base substitutions (Kong et al., 2012) and replication slippage errors at microsatellites (Sun et al., 2012). It is also known that carriers of germline mutations in mismatch repair (MMR) genes in humans are prone to get colorectal cancer and that the risk depends on the parent-of-origin of the mutation (van Vliet et al., 2011). The molecular basis of these parental effects is not entirely clear but is likely to involve higher rates of nondisjunction during female meiosis, higher mutation rates during spermatogenesis, and probably additional effects of aging.In contrast to the effect of parental age on germline mutations, not much is known about potential effects of parental reproductive age on somatic mutation rates in the offspring. However, it has been shown in animal studies that radiation of males can lead to somatic mutations in their progeny—and subsequent generations—that cannot be attributed to mutations in the paternal germline (for review, see Little et al., 2013). Moreover, several recent studies have illustrated the existence of complex parental and transgenerational effects in humans, although their molecular basis is not clear (Grossniklaus et al., 2013). These effects can be of either genetic nature (but the effect is seen even in offspring that did not inherit the genetic variant from their parents; for review, see Nadeau, 2009) or epigenetic nature (where environmental influences can possibly exert effects on subsequent generations; for review, see Pembrey et al., 2006; Pembrey, 2010; Curley et al., 2011). It is currently not known whether such parental effects affect the somatic mutation rates in the offspring or whether the effects are modulated by parental age.Taking advantage of the plant model system Arabidopsis, in which various somatic mutation rates can readily be assessed (Bashir et al., 2014), we investigated the effects of parental reproductive age on somatic mutation rates in the progeny. We report that there is a pronounced effect of parental age on somatic mutation rates in their offspring in a parent-of-origin-dependent fashion. Thus, some form of parental information, which is inherited through the gametes to the next generation, seems to alter the somatic mutation rates in the progeny and changes with parental reproductive age.  相似文献   
206.
Pre-mRNA splicing involves two transesterification steps catalyzed by the spliceosome. How RNA substrates are positioned in each step and the molecular rearrangements involved, remain obscure. Here, we show that mutations in PRP16, PRP8, SNU114 and the U5 snRNA that affect this process interact genetically with CWC21, that encodes the yeast orthologue of the human SR protein, SRm300/SRRM2. Our microarray analysis shows changes in 3′ splice site selection at elevated temperature in a subset of introns in cwc21Δ cells. Considering all the available data, we propose a role for Cwc21p positioning the 3′ splice site at the transition to the second step conformation of the spliceosome, mediated through its interactions with the U5 snRNP. This suggests a mechanism whereby SRm300/SRRM2, might influence splice site selection in human cells.  相似文献   
207.
208.
Calsequestrin (CASQ) exists as two distinct isoforms CASQ1 and CASQ2 in all vertebrates. Although the isoforms exhibit unique functional characteristic, the structural basis for the same is yet to be fully defined. Interestingly, the C‐terminal region of the two isoforms exhibit significant differences both in length and amino acid composition; forming Dn‐motif and DEXn‐motif in CASQ1 and CASQ2, respectively. Here, we investigated if the unique C‐terminal motifs possess Ca2+‐sensitivity and affect protein function. Sequence analysis shows that both the Dn‐ and DEXn‐motifs are intrinsically disordered regions (IDRs) of the protein, a feature that is conserved from fish to man. Using purified synthetic peptides, we show that these motifs undergo distinctive Ca2+‐mediated folding suggesting that these disordered motifs are Ca2+‐sensitivity. We generated chimeric proteins by swapping the C‐terminal portions between CASQ1 and CASQ2. Our studies show that the C‐terminal portions do not play significant role in protein folding. An interesting finding of the current study is that the switching of the C‐terminal portion completely reverses the polymerization kinetics. Collectively, these data suggest that these Ca2+‐sensitivity IDRs located at the back‐to‐back dimer interface influence isoform‐specific Ca2+‐dependent polymerization properties of CASQ. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 15–22, 2015.  相似文献   
209.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
210.
Tumors often contain multiple subpopulations of cancerous cells defined by distinct somatic mutations. We describe a new method, PhyloWGS, which can be applied to whole-genome sequencing data from one or more tumor samples to reconstruct complete genotypes of these subpopulations based on variant allele frequencies (VAFs) of point mutations and population frequencies of structural variations. We introduce a principled phylogenic correction for VAFs in loci affected by copy number alterations and we show that this correction greatly improves subclonal reconstruction compared to existing methods. PhyloWGS is free, open-source software, available at https://github.com/morrislab/phylowgs.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0602-8) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号