首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4260篇
  免费   277篇
  国内免费   5篇
  4542篇
  2023年   24篇
  2022年   52篇
  2021年   145篇
  2020年   48篇
  2019年   64篇
  2018年   107篇
  2017年   80篇
  2016年   131篇
  2015年   167篇
  2014年   241篇
  2013年   311篇
  2012年   350篇
  2011年   362篇
  2010年   214篇
  2009年   224篇
  2008年   230篇
  2007年   232篇
  2006年   202篇
  2005年   155篇
  2004年   168篇
  2003年   131篇
  2002年   109篇
  2001年   60篇
  2000年   70篇
  1999年   39篇
  1998年   22篇
  1997年   26篇
  1996年   15篇
  1995年   27篇
  1994年   21篇
  1993年   32篇
  1992年   30篇
  1991年   42篇
  1990年   21篇
  1989年   20篇
  1988年   26篇
  1987年   29篇
  1986年   16篇
  1985年   28篇
  1984年   14篇
  1983年   17篇
  1979年   21篇
  1977年   13篇
  1976年   14篇
  1975年   17篇
  1974年   13篇
  1973年   26篇
  1972年   13篇
  1971年   16篇
  1967年   14篇
排序方式: 共有4542条查询结果,搜索用时 15 毫秒
121.
Chalcones are biologically active class of compounds, known for their anticancer activities. Here we show for the first time that out of the six synthetic derivatives of chalcone tested, 2′-hydroxy-retrochalcone (HRC) was the most effective in inducing extensive cytoplasmic vacuolation mediated death called paraptosis in malignant breast and cervical cancer cells. The cell death by HRC is found to be nonapoptotic in nature due to the absence of DNA fragmentation, PARP cleavage, and phosphatidylserine externalization. It was also found to be nonautophagic as there was an increase in the levels of autophagic markers LC3I, LC3II and p62. Immunofluorescence with the endoplasmic reticulum (ER) marker protein calreticulin showed that the cytoplasmic vacuoles formed were derived from the ER. This ER dilation was due to ER stress as evidenced from the increase in polyubiquitinated proteins, Bip and CHOP. Docking studies revealed that HRC could bind to the Thr1 residue on the active site of the chymotrypsin-like subunit of the proteasome. The inhibition of proteasomal activity was further confirmed by the fluorescence based assay of the chymotrypsin-like subunit of the 26S proteasome. The cell death by HRC was also triggered by the collapse of mitochondrial membrane potential and depletion of ATP. Pretreatment with thiol antioxidants and cycloheximide were able to inhibit this programmed cell death. Thus our data suggest that HRC can effectively kill cancer cells via paraptosis, an alternative death pathway and can be a potential lead molecule for anticancer therapy.  相似文献   
122.
123.
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.  相似文献   
124.

Objectives

There has been increased interest in the possible role of human cytomegalovirus (HCMV) in carcinogenesis during the last decade. HCMV seroprevalence was enhanced in patients with hepatocellular carcinoma (HCC) but a possible relationship between HCC and HCMV infection remained to be assessed. The aim of this work was to investigate the pro-tumor influence of HCMV on primary human hepatocytes (PHH) and HepG2 cells.

Methods

Following infection of PHH and HepG2 cells by two different strains of HCMV, we measured the production of IL-6 in culture supernatants by ELISA and the protein levels of STAT3, pSTAT3, JAK, cyclin D1, survivin, p53, p21, and Mdm2 by western Blotting in infected and uninfected cells. Cell proliferation and transformation were investigated using Ki67Ag expression measurement and soft-agar colony formation assay respectively.

Results

Infection of HepG2 cells and PHH by HCMV resulted in the production of IL-6 and the subsequent activation of the IL-6R-JAK-STAT3 pathway. HCMV increased the expression of cyclin D1 and survivin. Cell proliferation was enhanced in HepG2 and PHH infected with HCMV, despite a paradoxical overexpression of p53 and p21. More importantly, we observed the formation of colonies in soft agar seeded with PHH infected with HCMV and when we challenged the HepG2 cultures to form tumorspheres, we found that the HCMV-infected cultures formed 2.5-fold more tumorspheres than uninfected cultures.

Conclusion

HCMV activated the IL-6-JAK-STAT3 pathway in PHH and HepG2 cells, favored cellular proliferation, induced PHH transformation and enhanced HepG2 tumorsphere formation. Our observations raise the possibility that HCMV infection might be involved in the genesis of hepatocellular carcinoma.  相似文献   
125.
Shigella dysenteriae type 1 is the causative agent of the most severe form of bacillary dysentery, which occurs as epidemics in many developing countries. We isolated a bacteriophage from surface water samples from Bangladesh that specifically lyses strains of S. dysenteriae type 1. This phage, designated SF-9, belongs to the Podoviridae family and has a 41-kb double-stranded DNA genome. Further screening of water samples for the prevalence of the phage revealed 9 of 71 (12.6%) water samples which were positive for the phage. These water samples were also positive in PCR assays for one or more S. dysenteriae type 1-specific genes, including ipaBCD and stx1, and live S. dysenteriae type 1 was isolated from three phage-positive samples. The results of this study suggest that phage SF-9 may have epidemiological applications in tracing the presence of S. dysenteriae type 1 in environmental waters.  相似文献   
126.
Nair R  Rost B 《Nucleic acids research》2003,31(13):3337-3340
LOC3D (http://cubic.bioc.columbia.edu/db/LOC3d/) is both a weekly-updated database and a web server for predictions of sub-cellular localization for eukaryotic proteins of known three-dimensional (3D) structure. Localization is predicted using four different methods: (i) PredictNLS, prediction of nuclear proteins through nuclear localization signals; (ii) LOChom, inferring localization through sequence homology; (iii) LOCkey, inferring localization through automatic text analysis of SWISS-PROT keywords; and (iv) LOC3Dini, ab initio prediction through a system of neural networks and vector support machines. The final prediction is based on the method that predicts localization with the highest confidence. The LOC3D database currently contains predictions for >8700 eukaryotic protein chains taken from the Protein Data Bank (PDB). The web server can be used to predict sub-cellular localization for proteins for which only a predicted structure is available from threading servers. This makes the resource of particular interest to structural genomics initiatives.  相似文献   
127.
Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) enzyme are useful for the treatment of various diseases including cancer. Comparative in silico studies were performed on different ligand-based (2D-QSAR, Kernel-based partial least square (KPLS) analysis, Pharmacophore Search Engine (PHASE) pharmacophore mapping), and structure-based (molecular docking, MM-GBSA analyses, Gaussian-based 3D-QSAR analyses on docked poses) modeling techniques to explore the structure–activity relationship of a diverse set of PARP-1 inhibitors. Two-dimensional (2D)-QSAR highlighted the importance of charge topological index (JGI7), fractional polar surface area (JursFPSA3), and connectivity index (CIC2) along with different molecular fragments. Favorable and unfavorable fingerprints were demonstrated in KPLS analysis, whereas important pharmacophore features (one acceptor, one donor, and two ring aromatic) along with favorable and unfavorable field effects were demonstrated in PHASE-based pharmacophore model. MM-GBSA analyses revealed significance of different polar, non-polar, and solvation energies. Docking-based alignment of ligands was used to perform Gaussian-based 3D-QSAR study that further demonstrated importance of different field effects. Overall, it was found that polar interactions (hydrogen bonding, bridged hydrogen bonding, and pi–cation) play major roles for higher activity. Steric groups increase the total contact surface area but it should have higher fractional polar surface area to adjust solvation energy. Structure-based pharmacophore mapping spotted the positive ionizable feature of ligands as the most important feature for discriminating highly active compounds from inactives. Molecular dynamics simulation, conducted on highly active ligands, described the dynamic behaviors of the protein complexes and supported the interpretations obtained from other modeling analyses. The current study may be useful for designing PARP-1 inhibitors.  相似文献   
128.
Using a previously reported conditional expression system for use in Bacillus subtilis (A. P. Bhavsar, X. Zhao, and E. D. Brown, Appl. Environ. Microbiol. 67:403-410, 2001), we report the first precise deletion of a teichoic acid biosynthesis (tag) gene, tagD, in B. subtilis. This teichoic acid mutant showed a lethal phenotype when characterized at a physiological temperature and in a defined genetic background. This tagD mutant was subject to full phenotypic rescue upon expression of the complementing copy of tagD. Depletion of the tagD gene product (glycerol 3-phosphate cytidylyltransferase) via modulated expression of tagD from the amyE locus revealed structural defects centered on shape, septation, and division. Thickening of the wall and ultimately lysis followed these events.  相似文献   
129.
Various pyrazolo[3,4-d]pyrimidines carrying a variety of substituents in the 6-position have been synthesised and their ability to inhibit growth of Mycobacterium tuberculosis in vitro has been determined. Compounds 5a, 5b, 6c, 7a, 7b, 8d, 8e and 8f demonstrated a minimum inhibitory concentration (MIC) of <6.25?μg/mL and were found to be active against Mycobacterium tuberculosis strain H(37)RV. Compound 8d was found to be the most active compound in vitro with a MIC of <6.25?μg/mL and inhibitory concentration IC(90) of 1.53?μg/mL.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号