首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8098篇
  免费   973篇
  国内免费   6篇
  2021年   178篇
  2020年   70篇
  2019年   97篇
  2018年   131篇
  2017年   100篇
  2016年   166篇
  2015年   225篇
  2014年   312篇
  2013年   389篇
  2012年   475篇
  2011年   504篇
  2010年   283篇
  2009年   280篇
  2008年   365篇
  2007年   318篇
  2006年   322篇
  2005年   272篇
  2004年   298篇
  2003年   220篇
  2002年   251篇
  2001年   188篇
  2000年   203篇
  1999年   180篇
  1998年   102篇
  1996年   75篇
  1995年   95篇
  1994年   80篇
  1993年   81篇
  1992年   148篇
  1991年   150篇
  1990年   131篇
  1989年   144篇
  1988年   140篇
  1987年   127篇
  1986年   110篇
  1985年   101篇
  1984年   88篇
  1983年   93篇
  1982年   61篇
  1981年   70篇
  1979年   103篇
  1978年   73篇
  1977年   77篇
  1976年   68篇
  1975年   78篇
  1974年   96篇
  1973年   76篇
  1972年   78篇
  1971年   67篇
  1970年   68篇
排序方式: 共有9077条查询结果,搜索用时 15 毫秒
991.
Hemoglobin A(2) (alpha(2)delta(2)) is an important hemoglobin variant which is a minor component (2-3%) in the circulating red blood cells, and its elevated concentration in beta-thalassemia is a useful clinical diagnostic. In beta-thalassemia major, where there is beta-chain production failure, HbA(2) acts as the predominant oxygen deliverer. HbA(2) has two more important features. (1) It is more resistant to thermal denaturation than HbA, and (2) it inhibits the polymerization of deoxy sickle hemoglobin (HbS). Hemoglobin E (E26K(beta)), formed as a result of the splice site mutation on exon 1 of the beta-globin gene, is another important hemoglobin variant which is known to be unstable at high temperatures. Both heterozygous HbE (HbAE) and homozygous HbE (HbEE) are benign disorders, but when HbE combines with beta-thalassemia, it causes E/beta-thalassemia which has severe clinical consequences. In this paper, we present the crystal structures of HbA(2) and HbE at 2.20 and 1.74 A resolution, respectively, in their R2 states, which have been used here to provide the probable explanations of the thermal stability and instability of HbA(2) and HbE. Using the coordinates of R2 state HbA(2), we modeled the structure of T state HbA(2) which allowed us to address the structural basis of the antisickling property of HbA(2). Using the coordinates of the delta-chain of HbA(2) (R2 state), we also modeled the structure of hemoglobin homotetramer delta(4) that occurs in the case of rare HbH disease. From the differences in intersubunit contacts among beta(4), gamma(4), and delta(4), we formed a hypothesis regarding the possible tetramerization pathway of delta(4). The crystal structure of a ferrocyanide-bound HbA(2) at 1.88 A resolution is also presented here, which throws light on the location and the mode of binding of ferrocyanide anion with hemoglobin, predominantly using the residues involved in DPG binding. The pH dependence of ferrocyanide binding with hemoglobin has also been investigated.  相似文献   
992.
beta(2)-adrenergic receptors (beta(2)AR) of all species are N-linked glycosylated at amino terminus residues approximately 6 and approximately 15. However, the human beta(2)AR has a potential third N-glycosylation site at ECL2 residue 187. To determine whether this residue is glycosylated and to ascertain function, all possible single/multiple Asn --> Gln mutations were made in the human beta(2) AR at positions 6, 15, and 187 and were expressed in Chinese hamster fibroblast cells. Substitution of Asn-187 alone or with Asn-6 or Asn-15 decreased the apparent molecular mass of the receptor on SDS-PAGE in a manner consistent with Asn-187 glycosylation. All receptors bound the agonist isoproterenol and functionally coupled to adenylyl cyclase. However, receptors without 187 glycosylation failed to display long term agonist-promoted down-regulation. In contrast, loss of Asn-6/Asn-15 glycosylation did not alter down-regulation. Cell surface distribution and agonist-promoted internalization of receptors and recruitment of beta-arrestin 2 were unaffected by the loss of 187 glycosylation. Furthermore, acutely internalized wild-type and Gln-187 receptors were both localized by confocal microscopy to early endosomes. During prolonged agonist exposure, wild-type beta(2)AR co-localized with lysosomes, consistent with trafficking to a degradation compartment. However, Gln-187 beta(2)AR failed to co-localize with lysosomes despite agonist treatments up to 18 h. Phylogenetic analysis revealed that this third glycosylation site is found in humans and other higher order primates but not in lower order primates such as the monkey. Nor is this third site found in rodents, which are frequently utilized as animal models. These data thus reveal a previously unrecognized beta(2)AR regulatory motif that appeared late in primate evolution and serves to direct internalized receptors to lysosomal degradation during long term agonist exposure.  相似文献   
993.
Glucuronide conjugation of xenobiotics containing a carboxylic acid moiety represents an important metabolic pathway for these compounds in humans. Several human UDP-glucuronosyltransferases (UGTs) have been shown to catalyze the formation of acyl-glucuronides, including UGT2B7, UGT1A3, and UGT1A9. In this study, recombinant expressed UGT isoforms were investigated with many structurally related carboxylic acid analogues, and the UGT rank order for catalyzing the glucuronidation of carboxylic acids was UGT2B7?UGT1A3 approximately UGT1A9. Despite being a poor substrate with UGT1A3, coumarin-3-carboxylic acid was not a substrate for any other UGT isoform tested in this study, suggesting that it could be a specific substrate for UGT1A3. Interestingly, UGT1A7 and UGT1A10 also react with several carboxylic acid aglycones. Kinetic analysis showed that UGT2B7 exhibits much higher glucuronidation efficiency (Vmax/Km) with ibuprofen, ketoprofen, and others, compared to UGT1A3. These data indicate that UGT2B7 could be the major isoform involved in the glucuronidation of carboxylic acid compounds in humans.  相似文献   
994.
Falcipain-2 is one of the principal hemoglobinases of Plasmodium falciparum, a human malaria parasite. It has a typical papain family cysteine protease structural organization, a large pro-domain, a mature domain with conserved active site amino acids. Pro-domain of falcipain-2 also contains two important conserved motifs, "GNFD" and "ERFNIN." The "GNFD" motif has been shown to be responsible for correct folding and stability in case of many papain family proteases. In the present study, we carried out site-directed mutagenesis to assess the roles of active site residues and pro-domain residues for the activity of falcipain-2. Our results showed that substitutions of putative active site residues; Q36, C42, H174, and N204 resulted in complete loss of falcipain-2 activity, while W206 and D155 mutants retained partial/complete activity in comparison to the wild type falcipain-2. Homology modeling data also corroborate the results of mutagenesis; Q36, C42, H174, N204, and W206 residues form the active site loop of the enzyme and D155 lie outside the active pocket. Substitutions in the pro-region did not affect the activity of falcipain-2. This implies that falcipain-2 shares active site residues with other members of papain family, however pro-region of falcipain-2 does not play any role in the activity of enzyme.  相似文献   
995.
Expression of the glycogen-targeting protein PTG promotes glycogen synthase activation and glycogen storage in various cell types. In this study, we tested the contribution of phosphorylase inactivation to the glycogenic action of PTG in hepatocytes by using a selective inhibitor of phosphorylase (CP-91149) that causes dephosphorylation of phosphorylase a and sequential activation of glycogen synthase. Similar to CP-91194, graded expression of PTG caused a concentration-dependent inactivation of phosphorylase and activation of glycogen synthase. The latter was partially counter-acted by the expression of muscle phosphorylase and was not additive with the activation by CP-91149, indicating that it is in part secondary to the inactivation of phosphorylase. PTG expression caused greater stimulation of glycogen synthesis and translocation of glycogen synthase than CP-91149, and the translocation of synthase could not be explained by accumulation of glycogen, supporting an additional role for glycogen synthase translocation in the glycogenic action of PTG. The effects of PTG expression on glycogen synthase and glycogen synthesis were additive with the effects of glucokinase expression, confirming the complementary roles of depletion of phosphorylase a (a negative modulator) and elevated glucose 6-phosphate (a positive modulator) in potentiating the activation of glycogen synthase. PTG expression mimicked the inactivation of phosphorylase caused by high glucose and counteracted the activation caused by glucagon. The latter suggests a possible additional role for PTG on phosphorylase kinase inactivation.  相似文献   
996.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   
997.
The specificity theory of somesthesis holds that perceptions of warmth, cold, and pain are served by separate senses. Although no longer accepted in all its details, the theory's basic assumptions of anatomical and functional specificity have remained guiding principles in research on temperature perception and its relationship to pain. This article reviews the response characteristics of thermoreceptors, temperature-sensitive nociceptors, and their associated pathways in the context of old and new perceptual phenomena, most of which cannot be satisfactorily explained by the specificity theory. The evidence indicates that throughout most of the perceptual range, temperature sensitivity depends upon coactivation of, and interactions among, thermal and nociceptive pathways that are composed of both specific "labeled lines" and nonspecific, multimodal fibers. Adding to this complexity is evidence that tactile stimulation can influence the way in which thermal stimulation is perceived. It is argued that thermoreception is best defined as a functional subsystem of somesthesis that serves the very different and sometimes conflicting demands of thermoregulation, protection from thermal injury, and haptic perception.  相似文献   
998.
Myeloperoxidase, a heme protein expressed by professional phagocytic cells, generates an array of oxidants which are proposed to contribute to tissue damage during inflammation. We now report that enzymatically active myeloperoxidase and its characteristic amino acid oxidation products are present in human brain. Further, expression of myeloperoxidase is increased in brain tissue showing Alzheimer's neuropathology. Consistent with expression in phagocytic cells, myeloperoxidase immunoreactivity was present in some activated microglia in Alzheimer brains. However, the majority of immunoreactive material in brain localized with amyloid plaques and, surprisingly, neurons including granule and pyramidal neurons of the hippocampus. Confirming neuronal localization of the enzyme, several neuronal cell lines as well as primary neuronal cultures expressed myeloperoxidase protein. Myeloperoxidase mRNA was also detected in neuronal cell lines. These results reveal the unexpected presence of myeloperoxidase in neurons. The increase in neuronal myeloperoxidase expression we observed in Alzheimer disease brains raises the possibility that the enzyme contributes to the oxidative stress implicated in the pathogenesis of the neurodegenerative disorder.  相似文献   
999.
Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号