首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2215篇
  免费   137篇
  国内免费   3篇
  2023年   13篇
  2022年   31篇
  2021年   101篇
  2020年   32篇
  2019年   42篇
  2018年   79篇
  2017年   53篇
  2016年   84篇
  2015年   98篇
  2014年   147篇
  2013年   175篇
  2012年   204篇
  2011年   234篇
  2010年   131篇
  2009年   127篇
  2008年   140篇
  2007年   121篇
  2006年   108篇
  2005年   76篇
  2004年   88篇
  2003年   60篇
  2002年   58篇
  2001年   17篇
  2000年   17篇
  1999年   9篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   9篇
  1994年   4篇
  1993年   9篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1983年   7篇
  1981年   2篇
  1979年   4篇
  1978年   4篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
排序方式: 共有2355条查询结果,搜索用时 15 毫秒
991.
Absorption and scattering efficiencies of semiconductor-coated Au nanoshell have been studied by the extended Mie theory for their possible solar cell, optical imaging, and photothermal applications, etc. The effect of Au shell layer thickness, core size, and surrounding medium on the absorption and scattering efficiencies at the localized surface plasmon resonance (LSPR) wavelengths has been reported. It has been found that both the absorption and scattering efficiencies get blue-shifted with an increase in Au shell layer thickness from 2 to 10 nm and with an increase in surrounding refractive index whereas the corresponding LSPR peaks shift towards red. It has also been found that the spectra are red-shifted with an increase in the core radius from 20 to 40 nm while keeping the shell thickness same. The effect of shell thickness on the absorption peak position and absorption linewidth has also been studied. Hence, the optical response of both CdSe- and CdTe-coated Au nanoshells can be tuned and controlled from the visible to the near-infrared (NIR) region of the electromagnetic (EM) spectrum. Finally, the CdSe-coated Au nanoshell exhibits high scattering and absorption efficiencies in comparison to the CdTe-coated nanoshell.  相似文献   
992.
Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host’s innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5′ and 3′ UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).  相似文献   
993.
Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin’s remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.  相似文献   
994.

Background

Synthetic biology is a discipline that includes making life forms artificially from chemicals. Here, a DNA molecule was enzymatically synthesized in vitro from DNA templates made from oligonucleotides representing the text of the first Tobacco mosaic virus (TMV) sequence elucidated in 1982. No infectious DNA molecule of that seminal reference sequence exists, so the goal was to synthesize it and then build viral chimeras.

Results

RNA was transcribed from synthetic DNA and encapsidated with capsid protein in vitro to make synthetic virions. Plants inoculated with the virions did not develop symptoms. When two nucleotide mutations present in the original sequence, but not present in most other TMV sequences in GenBank, were altered to reflect the consensus, the derivative synthetic virions produced classic TMV symptoms. Chimeras were then made by exchanging TMV capsid protein DNA with Tomato mosaic virus (ToMV) and Barley stripe mosaic virus (BSMV) capsid protein DNA. Virus expressing ToMV capsid protein exhibited altered, ToMV-like symptoms in Nicotiana sylvestris. A hybrid ORF6 protein unknown to nature, created by substituting the capsid protein genes in the virus, was found to be a major symptom determinant in Nicotiana benthamiana. Virus expressing BSMV capsid protein did not have an extended host range to barley, but did produce novel symptoms in N. benthamiana.

Conclusions

This first report of the chemical synthesis and artificial assembly of a plant virus corrects a long-standing error in the TMV reference genome sequence and reveals that unnatural hybrid virus proteins can alter symptoms unexpectedly.  相似文献   
995.

Background

Mutation(s) in proteins are a natural byproduct of evolution but can also cause serious diseases. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of all cellular protein translational machineries, and in humans they drive translation in both cytoplasm and mitochondria. Mutations in aaRSs have been implicated in a plethora of diseases including neurological conditions, metabolic disorders and cancer.

Results

We have developed an algorithmic approach for genome-wide analyses of sequence substitutions that combines evolutionary, structural and functional information. This pipeline enabled us to super-annotate human aaRS mutations and analyze their linkage to health disorders. Our data suggest that in some but not all cases, aaRS mutations occur in functional and structural sectors where they can manifest their pathological effects by altering enzyme activity or causing structural instability. Further, mutations appear in both solvent exposed and buried regions of aaRSs indicating that these alterations could lead to dysfunctional enzymes resulting in abnormal protein translation routines by affecting inter-molecular interactions or by disruption of non-bonded interactions. Overall, the prevalence of mutations is much higher in mitochondrial aaRSs, and the two most often mutated aaRSs are mitochondrial glutamyl-tRNA synthetase and dual localized glycyl-tRNA synthetase. Out of 63 mutations annotated in this work, only 12 (~20%) were observed in regions that could directly affect aminoacylation activity via either binding to ATP/amino-acid, tRNA or by involvement in dimerization. Mutations in structural cores or at potential biomolecular interfaces account for ~55% mutations while remaining mutations (~25%) remain structurally un-annotated.

Conclusion

This work provides a comprehensive structural framework within which most defective human aaRSs have been structurally analyzed. The methodology described here could be employed to annotate mutations in other protein families in a high-throughput manner.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1063) contains supplementary material, which is available to authorized users.  相似文献   
996.

Background

Some species of fungi can cause serious human diseases, particularly to immuno-compromised individuals. Opportunistic fungal infections are a leading cause of mortality, and present an emerging challenge that requires development of new and effective therapeutics. Aminoacyl-tRNA synthetases (aaRSs) are indispensable components of cellular protein translation machinery and can be targeted for discovery of novel anti-fungal agents.

Results

Validation of aaRSs as potential drug targets in pathogenic microbes prompted us to investigate the genomic distribution of aaRSs within three fungi that infect humans – A. niger, C. albicans and C. neoformans. Hidden Markov Models were built for aaRSs and related proteins to search for homologues in these fungal genomes. Here, we provide a detailed and comprehensive annotation for 3 fungal genome aaRSs and their associated proteins. We delineate predicted localizations, subdomain architectures and prevalence of unusual motifs within these aaRSs. Several fungal aaRSs have unique domain appendages of unknown function e.g. A. niger AsxRS and C. neoformans TyrRS have additional domains that are absent from human homologs.

Conclusions

Detailed comparisons of fungal aaRSs with human homologs suggest key differences that could be exploited for specific drug targeting. Our cataloging and structural analyses provide a comprehensive foundation for experimentally dissecting fungal aaRSs that may enable development of new anti-fungal agents.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1069) contains supplementary material, which is available to authorized users.  相似文献   
997.
Here we describe in detail the crystal structures of the Vitamin K2 synthesis protein MenD, from Escherichia coli, in complex with thiamine diphosphate (ThDP) and oxoglutarate, and the effects of cofactor and substrate on its structural stability. This is the first reported structure of MenD in complex with oxoglutarate. The residues Gly472 to Phe488 of the active site region are either disordered, or in an open conformation in the MenD oxoglutarate complex structure, but adopt a closed conformation in the MenD ThDP complex structure. Biospecific-interaction analysis using surface plasmon resonance (SPR) technology reveals an affinity for ThDP and oxoglutarate in the nanomolar range. Biochemical and structural analysis confirmed that MenD is highly dependent on ThDP for its structural stability. Our structural results combined with the biochemical assay reveal novel features of the enzyme that could be utilized in a program of rational structure-based drug design, as well as in helping to enhance our knowledge of the menaquinone synthesis pathway in greater detail.  相似文献   
998.
999.
Allelopathic effects of Cyperus rotundus on banana ‘Grande Naine’ were studied in vitro as well as ex vitro. To study the allelopathic effects in vitro, the Cyperus extract was added to the multiplication medium during preparation before adjusting the pH. Of the four concentrations, 0.2 and 0.6% decreased the shoot multiplication and shoot length but 1 and 2% extract completely inhibited the shoot multiplication but induced rooting in 50 and 28% shoots, respectively. For the ex vitro studies, the Cyperus extract was added to the hydroponic medium during the hardening of in vitro raised banana plantlets. The extract of 1 and 2% concentrations decreased the shoot and root length, number of leaves and new roots, fresh weight, total chlorophyll and protein. The fluorescence intensity ratio was successively increased resulting in decreased photosynthesis.  相似文献   
1000.
Multiple probes like absorbance, circular dichroism, fluorescence and biochemical changes have been exploited to understand the role of PLP (pyridoxal 5′ phosphate) in guanidine hydrochloride (GdnHCl) mediated unfolding and refolding processes of cystathionine gamma synthase from Mycobacterium tuberculosis (MtCGS). Unfolding by GdnHCl inactivates the enzyme due to loss of ketoenamine tautomer. Though PLP induces difference in secondary structure content, it is unable to provide stabilizing effect during the overall secondary structure unfolding process. But it induces tertiary structure stability of the protein thereby counteracting the deleterious effect of denaturant. In silico modelling and cofactor docking provide insights into molecular structure of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号