首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   29篇
  2023年   7篇
  2022年   36篇
  2021年   28篇
  2020年   10篇
  2019年   22篇
  2018年   15篇
  2017年   18篇
  2016年   20篇
  2015年   24篇
  2014年   34篇
  2013年   37篇
  2012年   40篇
  2011年   35篇
  2010年   19篇
  2009年   12篇
  2008年   30篇
  2007年   22篇
  2006年   16篇
  2005年   14篇
  2004年   11篇
  2003年   12篇
  2002年   6篇
  2001年   3篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1995年   3篇
  1993年   1篇
  1992年   7篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1968年   1篇
  1960年   1篇
  1951年   1篇
排序方式: 共有541条查询结果,搜索用时 125 毫秒
21.
Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σE envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.  相似文献   
22.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   
23.
24.
Nanomedicine is one of the most important methods used to treat human diseases including parasitic diseases. Schistosomiasis is a major parasitic disease that affects human health in tropical regions. Whilst Praziquantel is the main classic antischistosomal drug, new drugs are required due to the poor effect of the drug on the parasite juveniles and immature worms, and the emergence of drug resistant strains of Schistosoma. The present study aimed to examine the curative roles of both gold and selenium nanoparticles on jejunal tissues of mice infected with Schistosoma mansoni. Transmission electron microscopy was used for characterization of nanoparticles. Gold nanoparticles of 1 mg/kg mice body weight and selenium nanoparticles 0.5 mg/kg body weight were inoculated separately into mice infected with S. mansoni. The parasite induced a significant decrease in glutathione levels; however, the levels of nitric oxide and malondialdehyde were significantly increased. Additionally, the parasite introduced deteriorations in histological architecture of the jejunal tissue. Treatment of mice with metal nanoparticles reduced the levels of body weight changes, oxidative stress and histological impairment in the jejunal tissue significantly. Therefore, our results revealed the protective role of both selenium and gold nanoparticles against jejunal injury in mice infected with S. mansoni.  相似文献   
25.
ABSTRACT

Biomphalaria alexandrina snails have been used as bioindicators for freshwater qaulity and the effects of some herbicides such as butralin, glyphosate-isopropylammonium and pendimethalin). In the present study the effect of these three herbicides on snail biochemistry was examined. The results indicated that the herbicides increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the haemolymph of B. alexandrina snails and significantly decreased total protein and albumin content. Light microscopical examinations of haemocytes monolayers of B. alexandrina snails showed three different cell types (small cells, granulocytes and hyalinocytes). All three herbicides caused abnormalities in cell shapes. Flow cytometric analysis of haemocytes from B. alexandrina demonstrated that circulating haemocyte populations could be divided into two main subtypes differing in their granularity (granulocytes or hyalinocytes) and size (large and small cells). In addition, the flow cytometric analysis showed that the total number of dead haemocytes in the haemolymph was significantly increased in treated groups compared to the control group. Phagocytosis in groups treated with the herbicides was highly significantly increased compared to the control indicating a very strong response of the treated snails. The results of the alkaline comet assay of DNA damage demonstrated that these herbicides have a genotoxic effect.  相似文献   
26.
27.
Polydrusus (s. str.) akreanus sp. n. is a new record of Curculionidae found in Iraqi Kurdistan. The new species is described, illustrated and compared with Polydrusus (s. str.) kadleci Borovec & Germann, 2013 known from Turkey and Iran, which is morphologically similar to the new species.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:9FDC3C5B-6854-4DEF-BDF6-EE6809F82DEE  相似文献   

28.
This work aims to enhance the flavor of functional cucumber juice using herbal extracts of peppermint, basil, lavender, and lemongrass ethanolic extracts and extend its lifetime by controlling the chemical and microbial fluctuations. Cucumber juices were processed as; non-supplemented (J-Con), J-PME, J-BE, J-LE, and J-LEE supplemented with peppermint, basil, lavender, and lemongrass ethanolic extracts, respectively. Peppermint extract was significantly scavenged 88% of DPPH radicals and inhibited the growth of tested gram-positive, gram-negative bacteria and fungi followed by the lemongrass extract. The antioxidant activity of cucumber juices increased due to polyphenols and aroma compounds in the added extracts. However, the antioxidant content was decreased after two months of storage at 4 °C, due to the decrease in polyphenols. The flavor compounds were determined using GC mass, wherein hydrocarbons, acids, alcohols, and carbonyl compounds were the main aroma contents in cucumber juices, and their contents decreased with storage time. Peppermint and lemongrass extracts were significantly (p ≤ 0.05) increased the whiteness of J-PME, and J-LEE, respectively. The highest score of flavor and taste was observed in J-PME that scored 8.3 based on panelists'' reports followed by J-LEE. The PME was significantly maintained 91% of the odor and color of J-PME as compared to other juices.  相似文献   
29.
A new phytochemical study of Mortonia greggii (Celastraceae) afforded four friedelan derivatives (1-4), three lupanes (5-7), retusine (8), two esterified polyhydroxyagarofurans (9-10), mortonin C (11) and photomortonin C (12). The anti-inflammatory activity on carrageenan and 12-O-tetradecanoylphorbol-13-acetate induced models of inflammation, as well as the ability to inhibit the nitric oxide (NO) produced by lipopolysaccharide-stimulated mouse peritoneal macrophages were evaluated for the main metabolites. Our results showed that the friedelan dehydrocanophyllic acid methyl ester (1) exhibits an anti-inflammatory effect which could be related to an inhibition of prostaglandin and NO production. The activity of lupeol (5), 29-hydroxylupeol (6) and 29-hydroxylupenone (7) might be involved with the prostanoid synthesis. The presence of the hydroxy groups in 6 appears to be important for activity. The edema inhibition capacity of retusine (8) could be related to a reduction of the prostaglandin production. The agarofuran derivative 10 is an NO inhibitor whose activity is probably not involved in the synthesis of prostaglandins.  相似文献   
30.
Cell therapy is emerging as a promising strategy for myocardial repair. This approach is hampered, however, by the lack of sources for human cardiac tissue and by the absence of direct evidence for functional integration of donor cells into host tissues. Here we investigate whether cells derived from human embryonic stem (hES) cells can restore myocardial electromechanical properties. Cardiomyocyte cell grafts were generated from hES cells in vitro using the embryoid body differentiating system. This tissue formed structural and electromechanical connections with cultured rat cardiomyocytes. In vivo integration was shown in a large-animal model of slow heart rate. The transplanted hES cell-derived cardiomyocytes paced the hearts of swine with complete atrioventricular block, as assessed by detailed three-dimensional electrophysiological mapping and histopathological examination. These results demonstrate the potential of hES-cell cardiomyocytes to act as a rate-responsive biological pacemaker and for future myocardial regeneration strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号