首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1178篇
  免费   103篇
  国内免费   1篇
  2023年   6篇
  2022年   32篇
  2021年   35篇
  2020年   14篇
  2019年   24篇
  2018年   27篇
  2017年   24篇
  2016年   34篇
  2015年   49篇
  2014年   72篇
  2013年   74篇
  2012年   90篇
  2011年   91篇
  2010年   53篇
  2009年   43篇
  2008年   76篇
  2007年   70篇
  2006年   64篇
  2005年   55篇
  2004年   45篇
  2003年   76篇
  2002年   49篇
  2001年   14篇
  2000年   17篇
  1999年   19篇
  1998年   23篇
  1997年   11篇
  1996年   8篇
  1995年   9篇
  1994年   4篇
  1993年   14篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1972年   1篇
  1963年   1篇
  1951年   1篇
  1930年   1篇
排序方式: 共有1282条查询结果,搜索用时 453 毫秒
971.
Inbred mouse strains exhibit differences in susceptibility to influenza A infections. However, the molecular mechanisms underlying these differences are unknown. Therefore, we infected a highly susceptible mouse strain (DBA/2J) and a resistant strain (C57BL/6J) with influenza A H1N1 (PR8) and performed genome-wide expression analysis. We found genes expressed in lung epithelium that were specifically down-regulated in DBA/2J mice, whereas a cluster of genes on chromosome 3 was only down-regulated in C57BL/6J. In both mouse strains, chemokines, cytokines and interferon-response genes were up-regulated, indicating that the main innate immune defense pathways were activated. However, many immune response genes were up-regulated in DBA/2J much stronger than in C57BL/6J, and several immune response genes were exclusively regulated in DBA/2J. Thus, susceptible DBA/2J mice showed a hyper-inflammatory response. This response is similar to infections with highly pathogenic influenza virus and may serve as a paradigm for a hyper-inflammatory host response to influenza A virus.  相似文献   
972.
973.

Background and Purpose

Although total cerebral blood flow (tCBF) is known to be related to age, less is known regarding the associations between tCBF and the morphologic changes of the brain accompanying cerebral aging. The purpose of this study was to investigate whether total cerebral blood flow (tCBF) is related to white matter hyperintensity (WMH) volume and/or cerebral atrophy. Furthermore, we investigate whether tCBF should be expressed in mL/min, as was done in all previous MR studies, or in mL/100 mL/min, which yielded good results in precious SPECT, PET and perfusion MRI studies investigating regional cerebral blood flow.

Materials and Methods

Patients were included from the nested MRI sub-study of the PROSPER study. Dual fast spin echo and FLAIR images were obtained in all patients. In addition, single slice phase contrast MR angiography was used for flow measurements in the internal carotids and vertebral arteries. tCBF was expressed in both mL/min and mL/100 mL/min.

Results

We found a significant correlation between tCBF in mL/min and both age (r = −.124; p = p≤.001) and parenchymal volume (r = 0.430; p≤.001). We found no association between tCBF in mL/min and %-atrophy (r = −.077; p = .103) or total WMH volume (r = −.069; p = .148). When tCBF was expressed in mL/100 mL/min the correlation between tCBF and age was no longer found (r = −.001; p = .985). Multivariate regression analyses corrected for age showed a significant correlation between tCBF in mL/100 mL/min and WMH volume (r = −.106; p = .044). No significant association between tCBF in mL/100 mL/min and %-atrophy was found.

Conclusion

From this study we conclude that, when evaluating tCBF alterations due to various pathologies, tCBF should in mL/100 mL/min instead of mL/min. Furthermore, changes or differences in WMH volume should be accounted for.  相似文献   
974.

Background  

Increasing attention has been focused on inulin and levan-type oligosaccharides, including fructosyl-xylosides and other fructosides due to their nutraceutical properties. Bacillus subtilis levansucrase (LS) catalyzes the synthesis of levan from sucrose, but it may also transfer the fructosyl moiety from sucrose to acceptor molecules included in the reaction medium. To study transfructosylation reactions with highly active and robust derivatives, cross-linked enzyme aggregates (CLEAs) were prepared from wild LS and two mutants. CLEAs combine the catalytic features of pure protein preparations in terms of specific activity with the mechanical behavior of industrial biocatalysts.  相似文献   
975.
Unlike various model organisms, cellular responses to stress have not been related to human longevity. We investigated cellular responses to stress in skin fibroblasts that were isolated from young and very old subjects, and from offspring of nonagenarian siblings and their partners, representatives of the general population. Fibroblasts were exposed to rotenone and hyperglycemia and assessed for senescence‐associated β‐galactosidase (SA‐β‐gal) activity by flow cytometry. Apoptosis/cell death was measured with the Annexin‐V/PI assay and cell‐cycle analysis (Sub‐G1 content) and growth potential was determined by the colony formation assay. Compared with fibroblasts from young subjects, baseline SA‐β‐gal activity was higher in fibroblasts from old subjects (P = 0.004) as were stress‐induced increases (rotenone: P < 0.001, hyperglycemia: P = 0.027). For measures of apoptosis/cell death, fibroblasts from old subjects showed higher baseline levels (Annexin V+/PI+ cells: P = 0.040, Sub‐G1: P = 0.014) and lower stress‐induced increases (Sub‐G1: P = 0.018) than fibroblasts from young subjects. Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from young subjects (P = 0.017 and 0.006, respectively). Baseline levels of SA‐β‐gal activity and apoptosis/cell death were not different between fibroblasts from offspring and partner. Stress‐induced increases were lower for SA‐β‐gal activity (rotenone: P = 0.064, hyperglycemia: P < 0.001) and higher for apoptosis/cell death (Annexin V+/PI? cells: P = 0.041, Annexin V+/PI+ cells: P = 0.008). Numbers and total size of colonies under nonstressed conditions were higher for fibroblasts from offspring (P = 0.001 and 0.024, respectively) whereas rotenone‐induced decreases were lower (P = 0.008 and 0.004, respectively). These data provide strong support for the hypothesis that in vitro cellular responses to stress reflect the propensity for human longevity.  相似文献   
976.
Rift Valley fever (RVF) is an arthropod-borne viral disease repeatedly reported in many African countries and, more recently, in Saudi Arabia and Yemen. RVF virus (RVFV) primarily infects domesticated ruminants, resulting in miscarriage in pregnant females and death for newborns and young animals. It also has the ability to infect humans, causing a feverish syndrome, meningoencephalitis, or hemorrhagic fever. The various outcomes of RVFV infection in animals and humans argue for the existence of host genetic determinants controlling the disease. We investigated the susceptibility of inbred mouse strains to infection with the virulent RVFV ZH548 strain. Compared with classical BALB/cByJ mice, wild-derived Mus m. musculus MBT/Pas mice exhibited earlier and greater viremia and died sooner, a result in sharp contrast with their resistance to infection with West Nile virus and influenza A. Infection of mouse embryonic fibroblasts (MEFs) from MBT/Pas mice with RVFV also resulted in higher viral production. Microarray and quantitative RT-PCR experiments showed that BALB/cByJ MEFs displayed a significant activation of the type I IFN pathway. In contrast, MBT/Pas MEFs elicited a delayed and partial type I IFN response to RVFV infection. RNA interference-mediated inhibition of genes that were not induced by RVFV in MBT/Pas MEFs increased viral production in BALB/cByJ MEFs, thus demonstrating their functional importance in limiting viral replication. We conclude that the failure of MBT/Pas murine strain to induce, in due course, a complete innate immune response is instrumental in the selective susceptibility to RVF.  相似文献   
977.
Recently a novel family of putative nitric oxide synthases, with AtNOS1, the plant member implicated in NO production, has been described. Here we present experimental evidence that a mammalian ortholog of AtNOS1 protein functions in the cellular context of mitochondria. The expression data suggest that a candidate for mammalian mitochondrial nitric oxide synthase contributes to multiple physiological processes during embryogenesis, which may include roles in liver haematopoesis and bone development.  相似文献   
978.
Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.  相似文献   
979.
Rab GTPases require special machinery for protein prenylation, which include Rab escort protein (REP) and Rab geranylgeranyl transferase (RGGT). The current model of Rab geranylgeranylation proposes that REP binds Rab and presents it to RGGT. After geranylgeranylation of Rab C-terminal cysteines, REP delivers the prenylated protein to membranes. The REP-like protein Rab GDP dissociation inhibitor (RabGDI) then recycles the prenylated Rab between the membrane and the cytosol. The recent solution of crystal structures of the Rab prenylation machinery has helped to refine this model and provided further insights. The hydrophobic prenyl binding pocket of RGGT and geranylgeranyl transferase type-I (GGT-I) differs from that of farnesyl transferase (FT). A bulky tryptophan residue in FT restricts the size of the pocket, whereas in RGGT and GGT-I, this position is occupied by smaller residues. A highly conserved phenylalanine in REP, which is absent in RabGDI, is critical for the formation of the REP:RGGT complex. Finally, a geranylgeranyl binding site conserved in REP and RabGDI has been identified within helical domain II. The postprenylation events, including the specific targeting of Rabs to target membranes and the requirement for single versus double geranylgeranylation by different Rabs, remain obscure and should be the subject of future studies.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号