首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   24篇
  438篇
  2023年   6篇
  2022年   32篇
  2021年   25篇
  2020年   9篇
  2019年   20篇
  2018年   14篇
  2017年   15篇
  2016年   13篇
  2015年   20篇
  2014年   25篇
  2013年   30篇
  2012年   33篇
  2011年   28篇
  2010年   17篇
  2009年   12篇
  2008年   25篇
  2007年   18篇
  2006年   12篇
  2005年   11篇
  2004年   9篇
  2003年   13篇
  2002年   7篇
  2001年   3篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1951年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
101.
Contracting skeletal muscle increases glucose uptake to sustain energy demand. This is achieved through a gain in GLUT4 at the membrane, but the traffic mechanisms and regulatory signals involved are unknown. Muscle contraction is elicited by membrane depolarization followed by a rise in cytosolic Ca2+ and actomyosin activation, drawing on ATP stores. It is unknown whether one or more of these events triggers the rise in surface GLUT4. Here, we investigate the effect of membrane depolarization on GLUT4 cycling using GLUT4myc-expressing L6 myotubes devoid of sarcomeres and thus unable to contract. K+-induced membrane depolarization elevated surface GLUT4myc, and this effect was additive to that of insulin, was not prevented by inhibiting phosphatidylinositol 3-kinase (PI3K) or actin polymerization, and did not involve Akt activation. Instead, depolarization elevated cytosolic Ca2+, and the surface GLUT4myc elevation was prevented by dantrolene (an inhibitor of Ca2+ release from sarcoplasmic reticulum) and by extracellular Ca2+ chelation. Ca2+-calmodulin-dependent protein kinase-II (CaMKII) was not phosphorylated after 10 min of K+ depolarization, and the CaMK inhibitor KN62 did not prevent the gain in surface GLUT4myc. Interestingly, although 5'-AMP-activated protein kinase (AMPK) was phosphorylated upon depolarization, lowering AMPKalpha via siRNA did not alter the surface GLUT4myc gain. Conversely, the latter response was abolished by the PKC inhibitors bisindolylmaleimide I and calphostin C. Unlike insulin, K+ depolarization caused only a small increase in GLUT4myc exocytosis and a major reduction in its endocytosis. We propose that K+ depolarization reduces GLUT4 internalization through signals and mechanisms distinct from those engaged by insulin. Such a pathway(s) is largely independent of PI3K, Akt, AMPK, and CaMKII but may involve PKC.  相似文献   
102.
We delineated a syndromic recessive preaxial brachydactyly with partial duplication of proximal phalanges to 16.8 Mb over 4 chromosomes. High-throughput sequencing of all 177 candidate genes detected a truncating frameshift mutation in the gene CHSY1 encoding a chondroitin synthase with a Fringe domain. CHSY1 was secreted from patients' fibroblasts and was required for synthesis of chondroitin sulfate moieties. Noticeably, its absence triggered massive production of JAG1 and subsequent NOTCH activation, which could only be reversed with a wild-type but not a Fringe catalytically dead CHSY1 construct. In vitro, depletion of CHSY1 by RNAi knockdown resulted in enhanced osteogenesis in fetal osteoblasts and remarkable upregulation of JAG2 in glioblastoma cells. In vivo, chsy1 knockdown in zebrafish embryos partially phenocopied the human disorder; it increased NOTCH output and impaired skeletal, pectoral-fin, and retinal development. We conclude that CHSY1 is a secreted FRINGE enzyme required for adjustment of NOTCH signaling throughout human and fish embryogenesis and particularly during limb patterning.  相似文献   
103.
Dusky groupers (Epinephelus marginatus) are characterized by a complex sex allocation strategies and overexploitation of bigger individuals. We developed an individual based model to investigate the long-term effects of density dependence on grouper population dynamics and to analyze the variabilities of extinction probabilities as a result of interacting mortalities at different life stages. We conduct several simulations with different forms of sex allocation functions and different combinations of mortality rates. The model was parametrized using data on dusky grouper populations from the literature. The most important insights produced by this simulation study are that density dependence of sex allocation is an evolutionarily stable strategy, increases the population biomass, mitigates the effect of the removal of large male and indicates a need for protection of females and flexible stages.  相似文献   
104.
In the present study, two groups of pregnant female rats were submitted to food restriction (24 h fast versus 24 h diet intake) from the 14th day of pregnancy until either the 14th day (group B) or the 4th day after parturition (group C). All pups and their mothers were sacrificed on day 14 after delivery. The body weight of the 14-day-old pups (group B) was 46% less than the controls (group A). Free thyroxine and free triiodothyronine levels in the plasma were reduced by 44 and 16% in pups and by 20 and 36% in their mothers, respectively. These reductions were correlated with a decrease in thyroid iodine content of the pups (-50%) and their mothers (-24%). Radioiodine uptake (131I) by the thyroid gland of pups was significantly increased by 27%. Plasma TSH levels were decreased by 38% in pups and by 44% in dams. Morphological changes in thyroid glands were observed in energy restricted dams and in their pups. Some of follicles in pups were empty. Moroever in dams, we noted the presence of peripheral resorbed vacuoles, sign of thyroid hyperactivity. After a refeeding (group C) period of ten days, total recovery occurred in plasma thyroid hormone levels (FT4 and FT3) and in thyroid iodine contents of pups in spite of a partial recovery of body weights and plasma TSH levels. In dams, a partial recovery occurred in plasma thyroid hormone levels in spite of total recovery in thyroid iodine contents, while plasma TSH levels exceeded control values. A significant amelioration in thyroid histological aspects was observed in pups and their dams.  相似文献   
105.
Water buffalo (Bubalus bubalis), a large‐sized member of the Bovidae family, is considered as an important livestock species throughout Southeast Asia. In order to better understand the molecular basis of buffalo improvement and breeding, we sequenced and assembled the genome (2n=50) of a river buffalo species Bubalus bubalis from Bangladesh. Its genome size is 2.77 Gb, with a contig N50 of 25 kb and the scaffold N50 of 6.9 Mbp. Based on the assembled genome, we annotated 24,613 genes for future functional genomics studies. Phylogenetic tree analysis of cattle and water buffalo lineages showed that they diverged about 5.8–9.8 million years ago. Our findings provide an insight into the water buffalo genome which will contribute in further research on buffalo such as molecular breeding, understanding complex traits, conservation, and biodiversity.  相似文献   
106.
Mitochondrial dysfunction and oxidative stress are involved in neurodegenerative diseases associated with an enhancement of lipid peroxidation products such as 7β-hydroxycholesterol (7β-OHC). It is, therefore, important to study the ability of 7β-OHC to trigger mitochondrial defects, oxidative stress, metabolic dysfunctions and cell death, which are hallmarks of neurodegeneration, and to identify cytoprotective molecules. The effects of biotin were evaluated on 158N murine oligodendrocytes, which are myelin synthesizing cells, exposed to 7β-OHC (50?µM) with or without biotin (10 and 100?nM) or α-tocopherol (positive control of cytoprotection). The effects of biotin on 7β-OHC activities were determined using different criteria: cell adhesion; plasma membrane integrity; redox status. The impact on mitochondria was characterized by the measurement of transmembrane mitochondrial potential (ΔΨm), reactive oxygen species (ROS) overproduction, mitochondrial mass, quantification of cardiolipins and organic acids. Sterols and fatty acids were also quantified. Cell death (apoptosis, autophagy) was characterized by the enumeration of apoptotic cells, caspase-3 activation, identification of autophagic vesicles, and activation of LC3-I into LC3-II. Biotin attenuates 7β-OHC-induced cytotoxicity: loss of cell adhesion was reduced; antioxidant activities were normalized. ROS overproduction, protein and lipid oxidation products were decreased. Biotin partially restores mitochondrial functions: attenuation of the loss of ΔΨm; reduced levels of mitochondrial O2?? overproduction; normalization of cardiolipins and organic acid levels. Biotin also normalizes cholesterol and fatty acid synthesis, and prevents apoptosis and autophagy (oxiapoptophagy). Our data support that biotin, which prevents oligodendrocytes damages, could be useful in the treatment of neurodegeneration and demyelination.  相似文献   
107.
Kinetic studies of X exchange on [AuX4] square-planar complexes (where X=Cl and CN) were performed at acidic pH in the case of chloride system and as a function of pH for the cyanide one. Chloride NMR study (330-365 K) gives a second-order rate law on [AuCl4] with the kinetic parameters: (k2Au,Cl)298=0.56±0.03 s−1 mol−1 kg; ΔH2‡ Au,Cl=65.1±1 kJ mol−1; ΔS2‡ Au,Cl=−31.3±3 J mol−1 K−1 and ΔV2 Au,Cl=−14±2 cm3 mol−1. The variable pressure data clearly indicate the operation of an Ia or A mechanism for this exchange pathway. The proton exchange on HCN was determined by 13C NMR as a function of pH and the rate constant of the three reaction pathways involving H2O, OH and CN were determined: k0HCN,H=113±17 s−1, k1HCN,H=(2.9±0.7)×109 s−1 mol−1 kg and k2HCN,H=(0.6±0.2)×106 s−1 mol−1 kg at 298.1 K. The rate law of the cyanide exchange on [Au(CN)4] was found to be second order with the following kinetic parameters: (k2Au,CN)298=6240±85 s−1 mol−1 kg, ΔH2 Au,CN=40.0±0.8 kJ mol−1, ΔS2 Au,CN=−37.8±3 J mol−1 K−1 and ΔV2 Au,CN=+2±1 cm3 mol−1. The rate constant observed varies about nine orders of magnitude depending on the pH and HCN does not act as a nucleophile. The observed rate constant of X exchange on [AuX4] are two or three orders of magnitude faster than the Pt(II) analogue.  相似文献   
108.
IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfide-linked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins, as well as that of natural IL-17F and IL-17A derived from activated human CD4+ T cells, by enzyme-linked immunosorbent assay, immunoprecipitation followed by Western blotting, and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system, and that all forms of the recombinant proteins have in vitro functional activity. Furthermore, we find that in addition to the homodimers of IL-17F and IL-17A, activated human CD4+ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.  相似文献   
109.
Chromophores that absorb in the far-red region of the spectrum are increasingly being utilized for applications in the biosciences. We have synthesized and evaluated a novel series of fluorescent oxonols based on thiobarbituric acids containing aryl and heteroaryl substituents. The novel chromophores possess narrow absorption spectra ( approximately 40-nm bandwidths), reasonable Stokes shifts ( approximately 25 nm), and quantum yields of up to 0.67 in organic solvents and 0.3 in aqueous solvents, with absorption wavelength maxima at 620-640 nm. The spectral properties of the compounds are sensitive to base and exhibit a loss of far-red absorbance that is concentration and time dependent. Derivatives have been synthesized that can be used for the labeling of macromolecules such as proteins and DNA. The probes show environment sensitivity and the oligonucleotide conjugates sense the formation of duplex DNA. These novel far-red fluorophores have potential applications in diagnostic and research applications.  相似文献   
110.
A human therapeutic that specifically modulates skeletal muscle growth would potentially provide a benefit for a variety of conditions including sarcopenia, cachexia, and muscular dystrophy. Myostatin, a member of the TGF-beta family of growth factors, is a known negative regulator of muscle mass, as mice lacking the myostatin gene have increased muscle mass. Thus, an inhibitor of myostatin may be useful therapeutically as an anabolic agent for muscle. However, since myostatin is expressed in both developing and adult muscles, it is not clear whether it regulates muscle mass during development or in adults. In order to test the hypothesis that myostatin regulates muscle mass in adults, we generated an inhibitory antibody to myostatin and administered it to adult mice. Here we show that mice treated pharmacologically with an antibody to myostatin have increased skeletal muscle mass and increased grip strength. These data show for the first time that myostatin acts postnatally as a negative regulator of skeletal muscle growth and suggest that myostatin inhibitors could provide a therapeutic benefit in diseases for which muscle mass is limiting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号